Spaces:
Build error
Build error
File size: 19,688 Bytes
5637560 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 |
"""
Mask R-CNN
Display and Visualization Functions.
Copyright (c) 2017 Matterport, Inc.
Licensed under the MIT License (see LICENSE for details)
Written by Waleed Abdulla
"""
import colorsys
import itertools
import os
import random
import sys
import IPython.display
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import lines
from matplotlib import patches
from matplotlib.patches import Polygon
from skimage.measure import find_contours
# Root directory of the project
ROOT_DIR = os.path.abspath("../")
# Import Mask RCNN
sys.path.append(ROOT_DIR) # To find local version of the library
from mrcnn import utils
############################################################
# Visualization
############################################################
def display_images(
images, titles=None, cols=4, cmap=None, norm=None, interpolation=None
):
"""Display the given set of images, optionally with titles.
images: list or array of image tensors in HWC format.
titles: optional. A list of titles to display with each image.
cols: number of images per row
cmap: Optional. Color map to use. For example, "Blues".
norm: Optional. A Normalize instance to map values to colors.
interpolation: Optional. Image interpolation to use for display.
"""
titles = titles if titles is not None else [""] * len(images)
rows = len(images) // cols + 1
plt.figure(figsize=(14, 14 * rows // cols))
i = 1
for image, title in zip(images, titles):
plt.subplot(rows, cols, i)
plt.title(title, fontsize=9)
plt.axis("off")
plt.imshow(
image.astype(np.uint8), cmap=cmap, norm=norm, interpolation=interpolation
)
i += 1
plt.show()
def random_colors(N, bright=True):
"""
Generate random colors.
To get visually distinct colors, generate them in HSV space then
convert to RGB.
"""
brightness = 1.0 if bright else 0.7
hsv = [(i / N, 1, brightness) for i in range(N)]
colors = list(map(lambda c: colorsys.hsv_to_rgb(*c), hsv))
random.shuffle(colors)
return colors
def apply_mask(image, mask, color, alpha=0.5):
"""Apply the given mask to the image."""
for c in range(3):
image[:, :, c] = np.where(
mask == 1,
image[:, :, c] * (1 - alpha) + alpha * color[c] * 255,
image[:, :, c],
)
return image
def display_instances(
image,
boxes,
masks,
class_ids,
class_names,
scores=None,
title="",
figsize=(16, 16),
ax=None,
show_mask=True,
show_bbox=True,
colors=None,
captions=None,
):
"""
boxes: [num_instance, (y1, x1, y2, x2, class_id)] in image coordinates.
masks: [height, width, num_instances]
class_ids: [num_instances]
class_names: list of class names of the dataset
scores: (optional) confidence scores for each box
title: (optional) Figure title
show_mask, show_bbox: To show masks and bounding boxes or not
figsize: (optional) the size of the image
colors: (optional) An array or colors to use with each object
captions: (optional) A list of strings to use as captions for each object
"""
# Number of instances
N = boxes.shape[0]
if not N:
print("\n*** No instances to display *** \n")
else:
assert boxes.shape[0] == masks.shape[-1] == class_ids.shape[0]
# If no axis is passed, create one and automatically call show()
auto_show = False
if not ax:
_, ax = plt.subplots(1, figsize=figsize)
auto_show = True
# Generate random colors
colors = colors or random_colors(N)
# Show area outside image boundaries.
height, width = image.shape[:2]
ax.set_ylim(height + 10, -10)
ax.set_xlim(-10, width + 10)
ax.axis("off")
ax.set_title(title)
masked_image = image.astype(np.uint32).copy()
for i in range(N):
color = colors[i]
# Bounding box
if not np.any(boxes[i]):
# Skip this instance. Has no bbox. Likely lost in image cropping.
continue
y1, x1, y2, x2 = boxes[i]
if show_bbox:
p = patches.Rectangle(
(x1, y1),
x2 - x1,
y2 - y1,
linewidth=2,
alpha=0.7,
linestyle="dashed",
edgecolor=color,
facecolor="none",
)
ax.add_patch(p)
# Label
if not captions:
class_id = class_ids[i]
score = scores[i] if scores is not None else None
label = class_names[class_id]
caption = "{} {:.3f}".format(label, score) if score else label
else:
caption = captions[i]
ax.text(x1, y1 + 8, caption, color="w", size=11, backgroundcolor="none")
# Mask
mask = masks[:, :, i]
if show_mask:
masked_image = apply_mask(masked_image, mask, color)
# Mask Polygon
# Pad to ensure proper polygons for masks that touch image edges.
padded_mask = np.zeros((mask.shape[0] + 2, mask.shape[1] + 2), dtype=np.uint8)
padded_mask[1:-1, 1:-1] = mask
contours = find_contours(padded_mask, 0.5)
for verts in contours:
# Subtract the padding and flip (y, x) to (x, y)
verts = np.fliplr(verts) - 1
p = Polygon(verts, facecolor="none", edgecolor=color)
ax.add_patch(p)
# ax.imshow(masked_image.astype(np.uint8))
if auto_show:
plt.show()
return masked_image.astype(np.uint8)
def display_differences(
image,
gt_box,
gt_class_id,
gt_mask,
pred_box,
pred_class_id,
pred_score,
pred_mask,
class_names,
title="",
ax=None,
show_mask=True,
show_box=True,
iou_threshold=0.5,
score_threshold=0.5,
):
"""Display ground truth and prediction instances on the same image."""
# Match predictions to ground truth
gt_match, pred_match, overlaps = utils.compute_matches(
gt_box,
gt_class_id,
gt_mask,
pred_box,
pred_class_id,
pred_score,
pred_mask,
iou_threshold=iou_threshold,
score_threshold=score_threshold,
)
# Ground truth = green. Predictions = red
colors = [(0, 1, 0, 0.8)] * len(gt_match) + [(1, 0, 0, 1)] * len(pred_match)
# Concatenate GT and predictions
class_ids = np.concatenate([gt_class_id, pred_class_id])
scores = np.concatenate([np.zeros([len(gt_match)]), pred_score])
boxes = np.concatenate([gt_box, pred_box])
masks = np.concatenate([gt_mask, pred_mask], axis=-1)
# Captions per instance show score/IoU
captions = ["" for m in gt_match] + [
"{:.2f} / {:.2f}".format(
pred_score[i],
(
overlaps[i, int(pred_match[i])]
if pred_match[i] > -1
else overlaps[i].max()
),
)
for i in range(len(pred_match))
]
# Set title if not provided
title = (
title or "Ground Truth and Detections\n GT=green, pred=red, captions: score/IoU"
)
# Display
display_instances(
image,
boxes,
masks,
class_ids,
class_names,
scores,
ax=ax,
show_bbox=show_box,
show_mask=show_mask,
colors=colors,
captions=captions,
title=title,
)
def draw_rois(image, rois, refined_rois, mask, class_ids, class_names, limit=10):
"""
anchors: [n, (y1, x1, y2, x2)] list of anchors in image coordinates.
proposals: [n, 4] the same anchors but refined to fit objects better.
"""
masked_image = image.copy()
# Pick random anchors in case there are too many.
ids = np.arange(rois.shape[0], dtype=np.int32)
ids = np.random.choice(ids, limit, replace=False) if ids.shape[0] > limit else ids
fig, ax = plt.subplots(1, figsize=(12, 12))
if rois.shape[0] > limit:
plt.title("Showing {} random ROIs out of {}".format(len(ids), rois.shape[0]))
else:
plt.title("{} ROIs".format(len(ids)))
# Show area outside image boundaries.
ax.set_ylim(image.shape[0] + 20, -20)
ax.set_xlim(-50, image.shape[1] + 20)
ax.axis("off")
for i, id in enumerate(ids):
color = np.random.rand(3)
class_id = class_ids[id]
# ROI
y1, x1, y2, x2 = rois[id]
p = patches.Rectangle(
(x1, y1),
x2 - x1,
y2 - y1,
linewidth=2,
edgecolor=color if class_id else "gray",
facecolor="none",
linestyle="dashed",
)
ax.add_patch(p)
# Refined ROI
if class_id:
ry1, rx1, ry2, rx2 = refined_rois[id]
p = patches.Rectangle(
(rx1, ry1),
rx2 - rx1,
ry2 - ry1,
linewidth=2,
edgecolor=color,
facecolor="none",
)
ax.add_patch(p)
# Connect the top-left corners of the anchor and proposal for easy visualization
ax.add_line(lines.Line2D([x1, rx1], [y1, ry1], color=color))
# Label
label = class_names[class_id]
ax.text(
rx1,
ry1 + 8,
"{}".format(label),
color="w",
size=11,
backgroundcolor="none",
)
# Mask
m = utils.unmold_mask(mask[id], rois[id][:4].astype(np.int32), image.shape)
masked_image = apply_mask(masked_image, m, color)
ax.imshow(masked_image)
# Print stats
print("Positive ROIs: ", class_ids[class_ids > 0].shape[0])
print("Negative ROIs: ", class_ids[class_ids == 0].shape[0])
print(
"Positive Ratio: {:.2f}".format(
class_ids[class_ids > 0].shape[0] / class_ids.shape[0]
)
)
# TODO: Replace with matplotlib equivalent?
def draw_box(image, box, color):
"""Draw 3-pixel width bounding boxes on the given image array.
color: list of 3 int values for RGB.
"""
y1, x1, y2, x2 = box
image[y1 : y1 + 2, x1:x2] = color
image[y2 : y2 + 2, x1:x2] = color
image[y1:y2, x1 : x1 + 2] = color
image[y1:y2, x2 : x2 + 2] = color
return image
def display_top_masks(image, mask, class_ids, class_names, limit=4):
"""Display the given image and the top few class masks."""
to_display = []
titles = []
to_display.append(image)
titles.append("H x W={}x{}".format(image.shape[0], image.shape[1]))
# Pick top prominent classes in this image
unique_class_ids = np.unique(class_ids)
mask_area = [
np.sum(mask[:, :, np.where(class_ids == i)[0]]) for i in unique_class_ids
]
top_ids = [
v[0]
for v in sorted(
zip(unique_class_ids, mask_area), key=lambda r: r[1], reverse=True
)
if v[1] > 0
]
# Generate images and titles
for i in range(limit):
class_id = top_ids[i] if i < len(top_ids) else -1
# Pull masks of instances belonging to the same class.
m = mask[:, :, np.where(class_ids == class_id)[0]]
m = np.sum(m * np.arange(1, m.shape[-1] + 1), -1)
to_display.append(m)
titles.append(class_names[class_id] if class_id != -1 else "-")
display_images(to_display, titles=titles, cols=limit + 1, cmap="Blues_r")
def plot_precision_recall(AP, precisions, recalls):
"""Draw the precision-recall curve.
AP: Average precision at IoU >= 0.5
precisions: list of precision values
recalls: list of recall values
"""
# Plot the Precision-Recall curve
_, ax = plt.subplots(1)
ax.set_title("Precision-Recall Curve. AP@50 = {:.3f}".format(AP))
ax.set_ylim(0, 1.1)
ax.set_xlim(0, 1.1)
_ = ax.plot(recalls, precisions)
def plot_overlaps(
gt_class_ids, pred_class_ids, pred_scores, overlaps, class_names, threshold=0.5
):
"""Draw a grid showing how ground truth objects are classified.
gt_class_ids: [N] int. Ground truth class IDs
pred_class_id: [N] int. Predicted class IDs
pred_scores: [N] float. The probability scores of predicted classes
overlaps: [pred_boxes, gt_boxes] IoU overlaps of predictions and GT boxes.
class_names: list of all class names in the dataset
threshold: Float. The prediction probability required to predict a class
"""
gt_class_ids = gt_class_ids[gt_class_ids != 0]
pred_class_ids = pred_class_ids[pred_class_ids != 0]
plt.figure(figsize=(12, 10))
plt.imshow(overlaps, interpolation="nearest", cmap=plt.cm.Blues)
plt.yticks(
np.arange(len(pred_class_ids)),
[
"{} ({:.2f})".format(class_names[int(id)], pred_scores[i])
for i, id in enumerate(pred_class_ids)
],
)
plt.xticks(
np.arange(len(gt_class_ids)),
[class_names[int(id)] for id in gt_class_ids],
rotation=90,
)
thresh = overlaps.max() / 2.0
for i, j in itertools.product(range(overlaps.shape[0]), range(overlaps.shape[1])):
text = ""
if overlaps[i, j] > threshold:
text = "match" if gt_class_ids[j] == pred_class_ids[i] else "wrong"
color = (
"white"
if overlaps[i, j] > thresh
else "black"
if overlaps[i, j] > 0
else "grey"
)
plt.text(
j,
i,
"{:.3f}\n{}".format(overlaps[i, j], text),
horizontalalignment="center",
verticalalignment="center",
fontsize=9,
color=color,
)
plt.tight_layout()
plt.xlabel("Ground Truth")
plt.ylabel("Predictions")
def draw_boxes(
image,
boxes=None,
refined_boxes=None,
masks=None,
captions=None,
visibilities=None,
title="",
ax=None,
):
"""Draw bounding boxes and segmentation masks with different
customizations.
boxes: [N, (y1, x1, y2, x2, class_id)] in image coordinates.
refined_boxes: Like boxes, but draw with solid lines to show
that they're the result of refining 'boxes'.
masks: [N, height, width]
captions: List of N titles to display on each box
visibilities: (optional) List of values of 0, 1, or 2. Determine how
prominent each bounding box should be.
title: An optional title to show over the image
ax: (optional) Matplotlib axis to draw on.
"""
# Number of boxes
assert boxes is not None or refined_boxes is not None
N = boxes.shape[0] if boxes is not None else refined_boxes.shape[0]
# Matplotlib Axis
if not ax:
_, ax = plt.subplots(1, figsize=(12, 12))
# Generate random colors
colors = random_colors(N)
# Show area outside image boundaries.
margin = image.shape[0] // 10
ax.set_ylim(image.shape[0] + margin, -margin)
ax.set_xlim(-margin, image.shape[1] + margin)
ax.axis("off")
ax.set_title(title)
masked_image = image.astype(np.uint32).copy()
for i in range(N):
# Box visibility
visibility = visibilities[i] if visibilities is not None else 1
if visibility == 0:
color = "gray"
style = "dotted"
alpha = 0.5
elif visibility == 1:
color = colors[i]
style = "dotted"
alpha = 1
elif visibility == 2:
color = colors[i]
style = "solid"
alpha = 1
# Boxes
if boxes is not None:
if not np.any(boxes[i]):
# Skip this instance. Has no bbox. Likely lost in cropping.
continue
y1, x1, y2, x2 = boxes[i]
p = patches.Rectangle(
(x1, y1),
x2 - x1,
y2 - y1,
linewidth=2,
alpha=alpha,
linestyle=style,
edgecolor=color,
facecolor="none",
)
ax.add_patch(p)
# Refined boxes
if refined_boxes is not None and visibility > 0:
ry1, rx1, ry2, rx2 = refined_boxes[i].astype(np.int32)
p = patches.Rectangle(
(rx1, ry1),
rx2 - rx1,
ry2 - ry1,
linewidth=2,
edgecolor=color,
facecolor="none",
)
ax.add_patch(p)
# Connect the top-left corners of the anchor and proposal
if boxes is not None:
ax.add_line(lines.Line2D([x1, rx1], [y1, ry1], color=color))
# Captions
if captions is not None:
caption = captions[i]
# If there are refined boxes, display captions on them
if refined_boxes is not None:
y1, x1, y2, x2 = ry1, rx1, ry2, rx2
ax.text(
x1,
y1,
caption,
size=11,
verticalalignment="top",
color="w",
backgroundcolor="none",
bbox={"facecolor": color, "alpha": 0.5, "pad": 2, "edgecolor": "none"},
)
# Masks
if masks is not None:
mask = masks[:, :, i]
masked_image = apply_mask(masked_image, mask, color)
# Mask Polygon
# Pad to ensure proper polygons for masks that touch image edges.
padded_mask = np.zeros(
(mask.shape[0] + 2, mask.shape[1] + 2), dtype=np.uint8
)
padded_mask[1:-1, 1:-1] = mask
contours = find_contours(padded_mask, 0.5)
for verts in contours:
# Subtract the padding and flip (y, x) to (x, y)
verts = np.fliplr(verts) - 1
p = Polygon(verts, facecolor="none", edgecolor=color)
ax.add_patch(p)
ax.imshow(masked_image.astype(np.uint8))
def display_table(table):
"""Display values in a table format.
table: an iterable of rows, and each row is an iterable of values.
"""
html = ""
for row in table:
row_html = ""
for col in row:
row_html += "<td>{:40}</td>".format(str(col))
html += "<tr>" + row_html + "</tr>"
html = "<table>" + html + "</table>"
IPython.display.display(IPython.display.HTML(html))
def display_weight_stats(model):
"""Scans all the weights in the model and returns a list of tuples
that contain stats about each weight.
"""
layers = model.get_trainable_layers()
table = [["WEIGHT NAME", "SHAPE", "MIN", "MAX", "STD"]]
for l in layers:
weight_values = l.get_weights() # list of Numpy arrays
weight_tensors = l.weights # list of TF tensors
for i, w in enumerate(weight_values):
weight_name = weight_tensors[i].name
# Detect problematic layers. Exclude biases of conv layers.
alert = ""
if w.min() == w.max() and not (l.__class__.__name__ == "Conv2D" and i == 1):
alert += "<span style='color:red'>*** dead?</span>"
if np.abs(w.min()) > 1000 or np.abs(w.max()) > 1000:
alert += "<span style='color:red'>*** Overflow?</span>"
# Add row
table.append(
[
weight_name + alert,
str(w.shape),
"{:+9.4f}".format(w.min()),
"{:+10.4f}".format(w.max()),
"{:+9.4f}".format(w.std()),
]
)
display_table(table)
|