Spaces:
Sleeping
Sleeping
File size: 5,193 Bytes
761be79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
import os
import torch
import numpy as np
import cv2
from diffusers import DiffusionPipeline, StableDiffusionPipeline
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
from diffusers import DPMSolverMultistepScheduler, UniPCMultistepScheduler
from diffusers import AutoencoderKL
from PIL import Image
##################################################
def make_canny_condition(image):
image = np.array(image)
image = cv2.Canny(image, 100, 200)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
return image
def make_merged_canny(composition_image, reference_image, alpha):
if isinstance(composition_image, Image.Image):
composition_image = np.array(composition_image)
if isinstance(reference_image, Image.Image):
reference_image = np.array(reference_image)
composition_image = cv2.resize(composition_image, reference_image.shape[1::-1])
composition_canny = make_canny_condition(composition_image)
reference_canny = make_canny_condition(reference_image)
control_canny = cv2.addWeighted(composition_canny, alpha, reference_canny, (1.0 - alpha), 0.0)
return control_canny
##################################################
class SDHelper:
def __init__(self, config) -> None:
self.setup_config(config)
def get_stable_diffusion_models(self):
# "runwayml/stable-diffusion-v1-5", "stabilityai/stable-diffusion-2-1", "stabilityai/stable-diffusion-xl-base-1.0"
return {
'1.5': 'runwayml/stable-diffusion-v1-5',
'2.1': 'stabilityai/stable-diffusion-2-1',
'xl': 'stabilityai/stable-diffusion-xl-base-1.0',
}
# controlnet = ControlNetModel.from_pretrained('lllyasviel/control_v11p_sd15_seg', torch_dtype=torch.float16)
# pipe = StableDiffusionControlNetPipeline.from_pretrained(config.model_id, controlnet=self.controlnet, torch_dtype=torch.float16)
# def load_model(self, module, model_id, **kwargs):
# local_fn = os.path.join(self.config.model_dir, model_id)
# if os.path.exists(local_fn):
# controlnet = module.from_pretrained(local_fn, **kwargs)
# else:
# controlnet = module.from_pretrained(model_id, **kwargs)
# controlnet.save_pretrained(local_fn)
# return controlnet
# hugging face
def load_model(self, module, model_id, **kwargs):
device = "cuda" if torch.cuda.is_available() else "cpu"
if torch.cuda.is_available():
torch.cuda.max_memory_allocated(device=device)
m = module.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16",
**kwargs)
m.enable_xformers_memory_efficient_attention()
m = m.to(device)
else:
m = module.from_pretrained(model_id, **kwargs)
m = m.to(device)
return m
def setup_config(self, config):
self.config = config
# ae
if config.get('vae', None) is not None:
vae = self.load_model(AutoencoderKL, config.vae)
else:
vae = None
# with controlnet
if config.get('controlnet_id', None) is not None:
self.controlnet = self.load_model(ControlNetModel, config.controlnet_id)
self.controlnet_conditioning_scale = config.get('controlnet_conditioning_scale', 1.0)
pipe = self.load_model(StableDiffusionControlNetPipeline, config.model_id,
controlnet=self.controlnet)
# w/o controlnet
else:
self.controlnet = None
# stable diffusion pipeline
if config.model_id == 'stabilityai/stable-diffusion-xl-base-1.0':
# sdxl
pipe = self.load_model(DiffusionPipeline, config.model_id)
else:
# sd 1.5, 2.1
pipe = self.load_model(StableDiffusionPipeline, config.model_id)
# scheduler
if config.scheduler == 'DPMSolverMultistepScheduler':
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
elif config.scheduler == 'UniPCMultistepScheduler':
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
self.pipe = pipe
def forward(self, prompt, control_image=None):
if isinstance(control_image, np.ndarray):
control_image = Image.fromarray(control_image)
num_images_per_prompt = self.config.get('num_images_per_prompt', 4)
if control_image is None:
images = self.pipe(prompt, num_images_per_prompt=num_images_per_prompt).images
else:
images = self.pipe(prompt,
num_inference_steps=self.config.get('num_inference_steps', 50),
image=control_image,
num_images_per_prompt=num_images_per_prompt,
controlnet_conditioning_scale=self.controlnet_conditioning_scale,
).images
return images
##########
|