File size: 7,149 Bytes
ec24258
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a62a4b8
ec24258
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import cv2
import numpy as np
import yolov5


class CropVideo:
    """Base class for cropping a video frame-by-frame using various object
    detection method such as YOLO or cv2.Tracker

    Warning: This class should not be used directly.
    Use derived classes instead.

      Parameters:
        method : name of the object detection method
        model_path : path to object detection model

    """

    def __init__(self, method=None):
        self.method = method

    def video_crop(self, video_frames):
        """Crops given list of frames by detecting object using different
        methods such as YOLO or cv2.Tracker.

        Args:
          video_frames: A list of numpy arrays representing the input images

        Returns:
          A numpy array containing cropped frames
        """
        raise NotImplementedError


class YOLOCrop(CropVideo):

    """Class for cropping a video frame-by-frame using YOLO object detection
    method


    Parameters :
        cropping_model_path : path to object detection model

    """

    def __init__(self, method=None, model_path=None):
        super().__init__('yolo')
        self.model_path = model_path or 'models/yolo/yolov5x.pt'
        self.load_model(self.model_path)

    def load_model(self, model_path):
        """Loads object detection model.
        """
        self.model = yolov5.load(model_path)
        self.model.classes = 0

    def get_yolo_bbox(self, frame):
        """Runs YOLO object detection on an input image.

        Args:
          frame: A [height, width, 3] numpy array representing the input image

        Returns:
          A list conating boundig box parameters [x_min, y_min, x_max, y_max]
        """

        results = self.model(frame)
        predictions = results.pred[0]

        boxes = predictions[:, :4].numpy().astype(np.int32)
        if len(boxes) == 0:
            return []
        elif len(boxes) == 1:
            return list(boxes[0])
        else:
            area = []
            for i in boxes:
                area.append(cv2.contourArea(np.array([[i[:2]], [i[2:]]])))
            largest_bbox = boxes[np.argmax(np.array(area))]
            return list(largest_bbox)

    def video_crop(self, video_frames):
        """Crops given list of frames by detecting object using YOLO

        Args:
          video_frames: A list of numpy arrays representing the input images

        Returns:
          A numpy array containing cropped frames
        """

        x_width_start = []
        y_height_start = []
        x_width_end = []
        y_height_end = []
        frame_height, frame_width = 0, 0

        widths = []
        heights = []
        for frame in video_frames:
            frame_height, frame_width, _ = frame.shape
            bbox = self.get_yolo_bbox(frame)

            if len(bbox) == 0:
                continue
            else:
                x_width_start.append(int(max(bbox[0] - 100, 0)))
                y_height_start.append(int(max(bbox[1] - 100, 0)))
                x_width_end.append(int(min(bbox[2] + 100, frame.shape[1])))
                y_height_end.append(int(min(bbox[3] + 100, frame.shape[0])))

                widths.append(x_width_end[-1] - x_width_start[-1])
                heights.append(y_height_end[-1] - y_height_start[-1])

        width = np.percentile(np.array(widths), 95)
        height = np.percentile(np.array(heights), 95)
        box_len = int(max(width, height))

        cropped_frames = []

        for i in range(len(widths)):
            frame = video_frames[i]
            xs = x_width_start[i]
            xe = x_width_start[i] + box_len
            ys = y_height_start[i]
            ye = y_height_start[i] + box_len

            if ye > frame_height:
                ye = frame_height
                ys = max(0, ye - box_len)

            if xe > frame_width:
                xe = frame_width
                xs = max(0, xe - box_len)

            cropped = frame[int(ys): int(ye), int(xs): int(xe), :]
            cropped_frames.append(np.array(cropped))

        return np.array(cropped_frames)


class TrackerCrop(YOLOCrop):
    def __init__(self, model_path=None):
        super().__init__(method='yolo')
        self.tracker = cv2.TrackerMIL.create()

    @staticmethod
    def expand_bbox(bbox, frame_shape):
        """Expands given bounding box by 50 pixels

        Args:
          bbox: A list [x,y, width, height] consits of bounding box
          parameters of
                object
          frame_shape: (height, width) of a frame

        """
        bbox[0] = max(bbox[0] - 50, 0)
        bbox[1] = max(bbox[1] - 50, 0)
        bbox[2] = min(bbox[3] + 50, frame_shape[1] - bbox[0] - 1)
        bbox[3] = min(bbox[3] + 50, frame_shape[0] - bbox[1] - 1)

    @staticmethod
    def pad_bbox(crop_frame, box_len):
        """Pads given cropped frame

        Args:
          crop_frame: A numpy array representing the cropped frame
          box_len: An integer value representing maximum out of width and height

        Returns:
          A numpy array containing cropped frame with padding
        """
        if box_len > crop_frame.shape[0] or box_len > crop_frame.shape[1]:
            crop_frame = np.pad(
                crop_frame, pad_width=(
                    (0, box_len - crop_frame.shape[0]),
                    (0, box_len - crop_frame.shape[1]), (0, 0))
                )
        return crop_frame

    @staticmethod
    def clip_coordinates(x, y, box_len, frame_shape):
        """Clips (x,y) coordinates representing the centre of bounding box

        Args:
          x: x-coordinate of the centre of bounding box
          y: y-coordinate of the centre of bounding box
          box_len: An integer value representing maximum out of width and height
          frame_shape: (height, width) of a frame

        Returns:
          (x,y) clipped coordinates
        """
        if x + box_len > frame_shape[1]:
            diff = x + box_len - frame_shape[1]
            x = max(0, x - diff)
        if y + box_len > frame_shape[0]:
            diff = y + box_len - frame_shape[0]
            y = max(0, y - diff)

        return (x, y)

    def video_crop(self, video_frames):
        """Crops given list of frames by detecting object using cv2.Tracker

        Args:
          video_frames: A list of numpy arrays representing the input images

        Returns:
          A numpy array containing cropped frames
        """

        frame = video_frames[0]
        bbox = self.get_yolo_bbox(frame)
        TrackerCrop.expand_bbox(bbox, frame.shape)
        self.tracker.init(frame, bbox)
        output_frame_list = []
        for frame in video_frames:
            _, bbox = self.tracker.update(frame)
            x, y, w, h = bbox
            box_len = max(w, h)
            x, y = TrackerCrop.clip_coordinates(x, y, box_len, frame.shape)
            crop_frame = np.array(frame[y:y + box_len, x:x + box_len, :])
            crop_frame = TrackerCrop.pad_bbox(crop_frame, box_len)
            output_frame_list.append(crop_frame)

        output_frame_array = np.array(output_frame_list)

        return output_frame_array