Spaces:
Runtime error
Runtime error
File size: 6,770 Bytes
d5edf96 6f7e600 d5edf96 6f7e600 d5edf96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
"""Main entrypoint for the app."""
import os
import time
from queue import Queue
from timeit import default_timer as timer
import gradio as gr
from anyio.from_thread import start_blocking_portal
from app_modules.init import app_init
from app_modules.llm_chat_chain import ChatChain
from app_modules.utils import print_llm_response, remove_extra_spaces
llm_loader, qa_chain = app_init()
show_param_settings = os.environ.get("SHOW_PARAM_SETTINGS") == "true"
share_gradio_app = os.environ.get("SHARE_GRADIO_APP") == "true"
using_openai = os.environ.get("LLM_MODEL_TYPE") == "openai"
chat_with_llama_2 = (
not using_openai and os.environ.get("USE_LLAMA_2_PROMPT_TEMPLATE") == "true"
)
chat_history_enabled = (
not chat_with_llama_2 and os.environ.get("CHAT_HISTORY_ENABLED") == "true"
)
model = (
"OpenAI GPT-3.5"
if using_openai
else os.environ.get("HUGGINGFACE_MODEL_NAME_OR_PATH")
)
href = (
"https://platform.openai.com/docs/models/gpt-3-5"
if using_openai
else f"https://huggingface.co/{model}"
)
if chat_with_llama_2:
qa_chain = ChatChain(llm_loader)
name = "Llama-2"
else:
name = "SMU Library Chatbot"
title = f"""<h1 align="left" style="min-width:200px; margin-top:0;"> Chat with {name} </h1>"""
description_top = f"""\
<div align="left">
<p> Currently Running: <a href="{href}">{model}</a></p>
</div>
"""
description = """\
<div align="center" style="margin:16px 0">
The demo is built on <a href="https://github.com/hwchase17/langchain">LangChain</a>.
</div>
"""
CONCURRENT_COUNT = 1
def qa(chatbot):
user_msg = chatbot[-1][0]
q = Queue()
result = Queue()
job_done = object()
def task(question, chat_history):
start = timer()
inputs = {"question": question}
if not chat_with_llama_2:
inputs["chat_history"] = chat_history
ret = qa_chain.call_chain(inputs, None, q)
end = timer()
print(f"Completed in {end - start:.3f}s")
print_llm_response(ret)
q.put(job_done)
result.put(ret)
with start_blocking_portal() as portal:
chat_history = []
if chat_history_enabled:
for i in range(len(chatbot) - 1):
element = chatbot[i]
item = (element[0] or "", element[1] or "")
chat_history.append(item)
portal.start_task_soon(task, user_msg, chat_history)
content = ""
count = 2 if len(chat_history) > 0 else 1
while count > 0:
while q.empty():
print("nothing generated yet - retry in 0.5s")
time.sleep(0.5)
for next_token in llm_loader.streamer:
if next_token is job_done:
break
content += next_token or ""
chatbot[-1][1] = remove_extra_spaces(content)
if count == 1:
yield chatbot
count -= 1
if not chat_with_llama_2:
chatbot[-1][1] += "\n\nSources:\n"
ret = result.get()
titles = []
for doc in ret["source_documents"]:
url = doc.metadata["url"]
if "page" in doc.metadata:
page = doc.metadata["page"] + 1
url = f"{url}#page={page}"
title = url
if title not in titles:
titles.append(title)
chatbot[-1][1] += f"1. [{title}]({url})\n"
yield chatbot
with open("assets/custom.css", "r", encoding="utf-8") as f:
customCSS = f.read()
with gr.Blocks(css=customCSS) as demo:
user_question = gr.State("")
with gr.Row():
gr.HTML(title)
gr.Markdown(description_top)
with gr.Row().style(equal_height=True):
with gr.Column(scale=5):
with gr.Row():
chatbot = gr.Chatbot(elem_id="inflaton_chatbot").style(height="100%")
with gr.Row():
with gr.Column(scale=2):
user_input = gr.Textbox(
show_label=False, placeholder="Enter your question here"
).style(container=False)
with gr.Column(
min_width=70,
):
submitBtn = gr.Button("Send")
with gr.Column(
min_width=70,
):
clearBtn = gr.Button("Clear")
if show_param_settings:
with gr.Column():
with gr.Column(
min_width=50,
):
with gr.Tab(label="Parameter Setting"):
gr.Markdown("# Parameters")
top_p = gr.Slider(
minimum=-0,
maximum=1.0,
value=0.95,
step=0.05,
# interactive=True,
label="Top-p",
)
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=0,
step=0.1,
# interactive=True,
label="Temperature",
)
max_new_tokens = gr.Slider(
minimum=0,
maximum=2048,
value=2048,
step=8,
# interactive=True,
label="Max Generation Tokens",
)
max_context_length_tokens = gr.Slider(
minimum=0,
maximum=4096,
value=4096,
step=128,
# interactive=True,
label="Max Context Tokens",
)
gr.Markdown(description)
def chat(user_message, history):
return "", history + [[user_message, None]]
user_input.submit(
chat, [user_input, chatbot], [user_input, chatbot], queue=True
).then(qa, chatbot, chatbot)
submitBtn.click(
chat, [user_input, chatbot], [user_input, chatbot], queue=True, api_name="chat"
).then(qa, chatbot, chatbot)
def reset():
return "", []
clearBtn.click(
reset,
outputs=[user_input, chatbot],
show_progress=True,
api_name="reset",
)
demo.title = "Chat with SMU Library Chatbot" if chat_with_llama_2 else "Chat with Llama-2"
demo.queue(concurrency_count=CONCURRENT_COUNT).launch(share=share_gradio_app)
|