File size: 3,285 Bytes
3ac9dae 4ce9985 3ac9dae 4ce9985 3ac9dae 4ce9985 3ac9dae 4ce9985 3ac9dae 4ce9985 3ac9dae 4ce9985 3ac9dae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
"""Main entrypoint for the app."""
import json
import os
from timeit import default_timer as timer
from typing import List, Optional
from lcserve import serving
from pydantic import BaseModel
from app_modules.init import app_init
from app_modules.llm_chat_chain import ChatChain
from app_modules.utils import print_llm_response
llm_loader, qa_chain = app_init()
chat_history_enabled = os.environ.get("CHAT_HISTORY_ENABLED") == "true"
uuid_to_chat_chain_mapping = dict()
class ChatResponse(BaseModel):
"""Chat response schema."""
token: Optional[str] = None
error: Optional[str] = None
sourceDocs: Optional[List] = None
def do_chat(
question: str,
history: Optional[List] = None,
chat_id: Optional[str] = None,
streaming_handler: any = None,
):
if history is not None:
chat_history = []
if chat_history_enabled:
for element in history:
item = (element[0] or "", element[1] or "")
chat_history.append(item)
start = timer()
result = qa_chain.call_chain(
{"question": question, "chat_history": chat_history, "chat_id": chat_id},
streaming_handler,
)
end = timer()
print(f"Completed in {end - start:.3f}s")
print(f"qa_chain result: {result}")
return result
else:
if chat_id in uuid_to_chat_chain_mapping:
chat = uuid_to_chat_chain_mapping[chat_id]
else:
chat = ChatChain(llm_loader)
uuid_to_chat_chain_mapping[chat_id] = chat
result = chat.call_chain({"question": question}, streaming_handler)
print(f"chat result: {result}")
return result
@serving(websocket=True)
def chat(
question: str,
history: Optional[List] = None,
chat_id: Optional[str] = None,
**kwargs,
) -> str:
print("question@chat:", question)
streaming_handler = kwargs.get("streaming_handler")
result = do_chat(question, history, chat_id, streaming_handler)
resp = ChatResponse(
sourceDocs=result["source_documents"] if history is not None else []
)
return json.dumps(resp.dict())
@serving
def chat_sync(
question: str,
history: Optional[List] = None,
chat_id: Optional[str] = None,
**kwargs,
) -> str:
print("question@chat_sync:", question)
result = do_chat(question, history, chat_id, None)
return result["response"]
if __name__ == "__main__":
# print_llm_response(json.loads(chat("What's deep learning?", [])))
chat_start = timer()
chat_sync("what's deep learning?", chat_id="test_user")
chat_sync("more on finance", chat_id="test_user")
chat_sync("more on Sentiment analysis", chat_id="test_user")
chat_sync("Write the game 'snake' in python", chat_id="test_user")
# chat_sync("给我讲一个年轻人奋斗创业最终取得成功的故事。", chat_id="test_user")
# chat_sync("给这个故事起一个标题", chat_id="test_user")
chat_end = timer()
total_time = chat_end - chat_start
print(f"Total time used: {total_time:.3f} s")
print(f"Number of tokens generated: {llm_loader.streamer.total_tokens}")
print(
f"Average generation speed: {llm_loader.streamer.total_tokens / total_time:.3f} tokens/s"
)
|