File size: 4,543 Bytes
3ac9dae 71f3335 3ac9dae 4ce9985 3ac9dae 4ce9985 3ac9dae 4ce9985 3ac9dae 4ce9985 3ac9dae 71f3335 4ce9985 3ac9dae 71f3335 3ac9dae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
import abc
import os
import time
import urllib
from queue import Queue
from threading import Thread
from typing import List, Optional
from langchain.chains.base import Chain
from app_modules.llm_loader import LLMLoader, TextIteratorStreamer
from app_modules.utils import remove_extra_spaces
from urllib.parse import urlparse, urlunparse, quote
class LLMInference(metaclass=abc.ABCMeta):
llm_loader: LLMLoader
chain: Chain
def __init__(self, llm_loader):
self.llm_loader = llm_loader
self.chain = None
@abc.abstractmethod
def create_chain(self, inputs) -> Chain:
pass
def get_chain(self, inputs) -> Chain:
if self.chain is None:
self.chain = self.create_chain(inputs)
return self.chain
def run_chain(self, chain, inputs, callbacks: Optional[List] = []):
return chain(inputs, callbacks)
def call_chain(
self,
inputs,
streaming_handler,
q: Queue = None,
testing: bool = False,
):
print(inputs)
if self.llm_loader.streamer.for_huggingface:
self.llm_loader.lock.acquire()
try:
self.llm_loader.streamer.reset(q)
chain = self.get_chain(inputs)
result = (
self._run_chain_with_streaming_handler(
chain, inputs, streaming_handler, testing
)
if streaming_handler is not None
else self.run_chain(chain, inputs)
)
if "answer" in result:
result["answer"] = remove_extra_spaces(result["answer"])
source_path = os.environ.get("SOURCE_PATH")
base_url = os.environ.get("PDF_FILE_BASE_URL")
if base_url is not None and len(base_url) > 0:
documents = result["source_documents"]
for doc in documents:
source = doc.metadata["source"]
title = source.split("/")[-1]
doc.metadata["url"] = f"{base_url}{urllib.parse.quote(title)}"
elif source_path is not None and len(source_path) > 0:
documents = result["source_documents"]
for doc in documents:
source = doc.metadata["source"]
url = source.replace(source_path, "https://")
url = url.replace(".html", "")
parsed_url = urlparse(url)
# Encode path, query, and fragment
encoded_path = quote(parsed_url.path)
encoded_query = quote(parsed_url.query)
encoded_fragment = quote(parsed_url.fragment)
# Construct the encoded URL
doc.metadata["url"] = urlunparse(
(
parsed_url.scheme,
parsed_url.netloc,
encoded_path,
parsed_url.params,
encoded_query,
encoded_fragment,
)
)
return result
finally:
if self.llm_loader.streamer.for_huggingface:
self.llm_loader.lock.release()
def _execute_chain(self, chain, inputs, q, sh):
q.put(self.run_chain(chain, inputs, callbacks=[sh]))
def _run_chain_with_streaming_handler(
self, chain, inputs, streaming_handler, testing
):
que = Queue()
t = Thread(
target=self._execute_chain,
args=(chain, inputs, que, streaming_handler),
)
t.start()
if self.llm_loader.streamer.for_huggingface:
count = (
2
if "chat_history" in inputs and len(inputs.get("chat_history")) > 0
else 1
)
while count > 0:
try:
for token in self.llm_loader.streamer:
if not testing:
streaming_handler.on_llm_new_token(token)
self.llm_loader.streamer.reset()
count -= 1
except Exception:
if not testing:
print("nothing generated yet - retry in 0.5s")
time.sleep(0.5)
t.join()
return que.get()
|