Spaces:
Build error
Build error
File size: 22,325 Bytes
3860729 95ba169 3860729 990ef6d ad9aba8 3860729 3f6b774 553af0d 3860729 553af0d 3860729 990ef6d 3860729 553af0d 3860729 3f6b774 3860729 990ef6d 3860729 fddc7fb 3860729 6fc6dc9 fddc7fb 3f6b774 3860729 3f6b774 fddc7fb 3860729 6fc6dc9 3860729 12a5ff3 3860729 fddc7fb 3860729 3f6b774 3860729 1a9edc9 7dab5c1 553af0d 3f6b774 0156aec 3860729 0156aec ee71b10 0156aec ee71b10 3860729 ee71b10 a69b127 3860729 3f6b774 3860729 990ef6d 7dab5c1 553af0d 7dab5c1 553af0d 7dab5c1 553af0d 3860729 3f6b774 3860729 7dab5c1 990ef6d ee71b10 1bdff66 a69b127 553af0d 3f6b774 7dab5c1 1bdff66 7dab5c1 1bdff66 a69b127 3860729 3f6b774 3860729 990ef6d 1a9edc9 1bdff66 3860729 553af0d 7dab5c1 2a89293 3860729 ad9aba8 553af0d 3f6b774 ad9aba8 3860729 fddc7fb 3860729 fddc7fb 3860729 fddc7fb 3860729 fddc7fb 3860729 fddc7fb 3860729 fddc7fb 3860729 fddc7fb 95ba169 6fc6dc9 95ba169 6fc6dc9 95ba169 6fc6dc9 95ba169 6fc6dc9 95ba169 6fc6dc9 95ba169 6fc6dc9 95ba169 2a89293 95ba169 ee71b10 95ba169 6fc6dc9 95ba169 2a89293 95ba169 2a89293 95ba169 2a89293 95ba169 2a89293 95ba169 ee71b10 2a89293 6fc6dc9 3f6b774 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 |
import os
import re
import glob
import pandas as pd
import evaluate
import seaborn as sns
import matplotlib.pyplot as plt
from datasets import load_dataset
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate
from tqdm import tqdm
from eval_modules.calc_repetitions import *
from llm_toolkit.llm_utils import load_tokenizer, print_row_details
print(f"loading {__file__}")
bleu = evaluate.load("bleu")
rouge = evaluate.load("rouge")
meteor = evaluate.load("meteor")
accuracy = evaluate.load("accuracy")
sacrebleu = evaluate.load("sacrebleu")
comet = evaluate.load("comet")
def extract_answer(text, debug=False):
if text:
# Remove the begin and end tokens
text = re.sub(
r".*?(assistant|\[/INST\]).+?\b", "", text, flags=re.DOTALL | re.MULTILINE
)
if debug:
print("--------\nstep 1:", text)
text = re.sub(r"<.+?>.*", "", text, flags=re.DOTALL | re.MULTILINE)
if debug:
print("--------\nstep 2:", text)
text = re.sub(
r".*?end_header_id\|>\n\n", "", text, flags=re.DOTALL | re.MULTILINE
)
if debug:
print("--------\nstep 3:", text)
return text
def calc_metrics(references, predictions, sources=None, debug=False):
assert len(references) == len(
predictions
), f"lengths are difference: {len(references)} != {len(predictions)}"
predictions = [extract_answer(text) for text in predictions]
results = {}
results["comet"] = comet.compute(
predictions=predictions, references=references, sources=sources
)["mean_score"]
results["meteor"] = meteor.compute(predictions=predictions, references=references)[
"meteor"
]
results["sacrebleu"] = sacrebleu.compute(
predictions=predictions, references=references
)
results["bleu_scores"] = bleu.compute(
predictions=predictions, references=references, max_order=4
)
results["rouge_scores"] = rouge.compute(
predictions=predictions, references=references
)
correct = [1 if ref == pred else 0 for ref, pred in zip(references, predictions)]
accuracy = sum(correct) / len(references)
results["accuracy"] = accuracy
if debug:
correct_ids = [i for i, c in enumerate(correct) if c == 1]
results["correct_ids"] = correct_ids
return results
def save_results(model_name, results_path, dataset, predictions, debug=False):
if not os.path.exists(results_path):
# Get the directory part of the file path
dir_path = os.path.dirname(results_path)
# Create all directories in the path (if they don't exist)
os.makedirs(dir_path, exist_ok=True)
df = dataset.to_pandas()
df.drop(columns=["text", "prompt"], inplace=True, errors="ignore")
else:
df = pd.read_csv(results_path, on_bad_lines="warn")
df[model_name] = predictions
if debug:
print(df.head(1))
df.to_csv(results_path, index=False)
system_prompt = "You are a helpful assistant that translates Chinese to English."
def get_few_shot_prompt(dataset, num_shots=5):
translation_prompt = "You will be given a Chinese sentence to translate. If it is an incomplete sentence, or if you are unsure about the meaning, simply copy the input text as your output. Do not output any additional sentence such as explanation or reasoning.\n\n"
if num_shots > 0:
example_translations = "Example Translations:\n"
for i in range(num_shots):
example_translations += f"Chinese: {dataset[i]['chinese']}\n"
example_translations += f"English: {dataset[i]['english']}\n"
translation_prompt = translation_prompt + example_translations + "\n"
translation_prompt = translation_prompt + "Chinese: {input}\nEnglish:"
return translation_prompt
def load_translation_dataset(data_path, tokenizer=None, num_shots=0, for_openai=False):
train_data_file = data_path.replace(".tsv", "-train.tsv")
test_data_file = data_path.replace(".tsv", "-test.tsv")
if not os.path.exists(train_data_file):
print("generating train/test data files")
dataset = load_dataset(
"csv", data_files=data_path, delimiter="\t", split="train"
)
print(len(dataset))
dataset = dataset.filter(lambda x: x["chinese"] and x["english"])
datasets = dataset.train_test_split(test_size=0.2)
print(len(dataset))
# Convert to pandas DataFrame
train_df = pd.DataFrame(datasets["train"])
test_df = pd.DataFrame(datasets["test"])
# Save to TSV
train_df.to_csv(train_data_file, sep="\t", index=False)
test_df.to_csv(test_data_file, sep="\t", index=False)
print("loading train/test data files")
datasets = load_dataset(
"csv",
data_files={"train": train_data_file, "test": test_data_file},
delimiter="\t",
)
if tokenizer or for_openai:
translation_prompt = get_few_shot_prompt(datasets["train"], num_shots)
def formatting_prompts_func(examples):
inputs = examples["chinese"]
outputs = examples["english"]
messages = [
{
"role": "system",
"content": system_prompt,
},
None,
]
model_name = os.getenv("MODEL_NAME")
# if "mistral" in model_name.lower():
# messages = messages[1:]
texts = []
prompts = []
for input, output in zip(inputs, outputs):
prompt = translation_prompt.format(input=input)
messages[-1] = {"role": "user", "content": prompt}
if for_openai:
prompts.append(messages.copy())
text = messages.copy()
text.append(
{
"role": "assistant",
"content": output,
}
)
texts.append(text)
else:
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
prompts.append(prompt)
texts.append(prompt + output + tokenizer.eos_token)
return {"text": texts, "prompt": prompts}
datasets = datasets.map(
formatting_prompts_func,
batched=True,
)
print(datasets)
return datasets
def count_entries_with_max_tokens(entries, max_tokens):
"""
Count the number of entries with the max output tokens or more.
Parameters:
entries (list of int): List of token counts for each entry.
max_tokens (int): The maximum token threshold.
Returns:
int: The number of entries with token counts greater than or equal to max_tokens.
"""
count = 0
for tokens in entries:
if tokens >= max_tokens:
count += 1
return count
def detect_repetition_scores(row, col, debug=False):
# print(f"row: {row}")
newline_score, repetition_score, total_repetitions = detect_repetitions(
row[col], debug=debug
)
newline_score -= row["ground_truth_ews_score"]
repetition_score -= row["ground_truth_repetition_score"]
total_repetitions -= row["ground_truth_total_repetitions"]
return pd.Series(
[
newline_score if newline_score > 0 else 0,
repetition_score if repetition_score > 0 else 0,
total_repetitions if total_repetitions > 0 else 0,
]
)
def count_chinese_characters(text):
# Define a regular expression pattern for Chinese characters
chinese_char_pattern = r"[\u4e00-\u9fff]"
# Use re.findall to find all Chinese characters in the text
chinese_chars = re.findall(chinese_char_pattern, text)
# Return the count of Chinese characters
return len(chinese_chars)
def count_chinese_characters(text):
chinese_char_pattern = re.compile(r"[\u4e00-\u9fff]")
return 1 if chinese_char_pattern.search(text) else 0
def get_metrics(df, max_output_tokens=2048, variant="rpp"):
metrics_df = pd.DataFrame(df.columns.T)[2:]
metrics_df.rename(columns={0: "model"}, inplace=True)
metrics_df[variant] = metrics_df["model"].apply(
lambda x: x.split(f"{variant}-")[-1]
)
metrics_df["model"] = metrics_df["model"].apply(
lambda x: x.split(f"/{variant}-")[0].split("/checkpoint")[0]
)
metrics_df.reset_index(inplace=True)
metrics_df = metrics_df.drop(columns=["index"])
models = metrics_df["model"].unique()
print(models)
tokenizers = {model: load_tokenizer(model) for model in models}
meteor = []
spbleu = []
bleu_1 = []
rouge_l = []
ews_score = []
repetition_score = []
total_repetitions = []
num_max_output_tokens = []
translation_completeness = []
columns = df.columns[2:]
df[
[
"ground_truth_ews_score",
"ground_truth_repetition_score",
"ground_truth_total_repetitions",
]
] = df["english"].apply(detect_scores)
new_col = f"count_chinese_characters-ground_truth"
df[new_col] = df["chinese"].apply(count_chinese_characters)
for col in columns:
metrics = calc_metrics(
df["english"], df[col], sources=df["chinese"], debug=True
)
print(f"{col}: {metrics}")
meteor.append(metrics["meteor"])
spbleu.append(metrics["sacrebleu"]["score"])
bleu_1.append(metrics["bleu_scores"]["bleu"])
rouge_l.append(metrics["rouge_scores"]["rougeL"])
df[["ews_score", "repetition_score", "total_repetitions"]] = df.apply(
lambda x: detect_repetition_scores(x, col), axis=1
)
ews_score.append(df["ews_score"].mean())
repetition_score.append(df["repetition_score"].mean())
total_repetitions.append(df["total_repetitions"].mean())
model = col.split(f"/{variant}")[0].split("/checkpoint")[0]
new_col = f"ground_truth_tokens-{model}"
df[new_col] = df["english"].apply(
lambda x: len(tokenizers[model](x)["input_ids"])
)
new_col = f"count_chinese_characters-{col}"
df[new_col] = df[col].apply(count_chinese_characters)
translation_completeness.append(
1 - df[new_col].sum() / df["count_chinese_characters-ground_truth"].sum()
)
new_col = f"output_tokens-{col}"
df[new_col] = df[col].apply(lambda x: len(tokenizers[model](x)["input_ids"]))
num_max_output_tokens.append(
count_entries_with_max_tokens(df[new_col], max_output_tokens)
)
metrics_df["meteor"] = meteor
metrics_df["spbleu"] = spbleu
metrics_df["bleu_1"] = bleu_1
metrics_df["rouge_l"] = rouge_l
metrics_df["ews_score"] = ews_score
metrics_df["repetition_score"] = repetition_score
metrics_df["total_repetitions"] = total_repetitions
metrics_df["rap"] = metrics_df.apply(
lambda x: x["meteor"] / math.log10(10 + x["total_repetitions"]), axis=1
)
metrics_df["translation_completeness"] = translation_completeness
metrics_df["num_max_output_tokens"] = num_max_output_tokens
if variant != "rpp":
metrics_df[variant] = metrics_df[variant].astype(int)
return metrics_df
def analyze_translation_results(df, col, max_new_tokens=300, repetition_threshold=100):
df[["ews_score", "repetition_score", "total_repetitions"]] = df.apply(
lambda x: detect_repetition_scores(x, col), axis=1
)
rows = df.query(f"total_repetitions > {repetition_threshold}")
print(
f"*** Found {len(rows)} rows with total_repetitions > {repetition_threshold} for {col}"
)
for i in range(len(rows)):
row = rows.iloc[i]
print(row["chinese"])
print("=" * 80)
print(row["english"])
print("=" * 80)
output = row[col]
print(output)
print("=" * 80)
detect_repetitions(output, debug=True)
output_tokens = f"output_tokens-{col}"
df2 = df[df[output_tokens] >= max_new_tokens][
["chinese", "english", col, output_tokens]
]
print(
f"\n*** Found {len(df2)} rows with output_tokens >= {max_new_tokens} for {col}"
)
print_row_details(df2, range(len(df2)))
count_chinese_characters = f"count_chinese_characters-{col}"
df3 = df[df[count_chinese_characters] > 0][
["chinese", "english", col, count_chinese_characters]
]
print(f"\n*** Found {len(df3)} rows with incomplete translations for {col}")
print_row_details(df3, range(len(df3)))
def plot_metrics(metrics_df, figsize=(14, 5), ylim=(0, 0.44)):
plt.figure(figsize=figsize)
df_melted = pd.melt(
metrics_df, id_vars="model", value_vars=["meteor", "bleu_1", "rouge_l"]
)
barplot = sns.barplot(x="variable", y="value", hue="model", data=df_melted)
# Set different hatches for each model
hatches = ["/", "\\", "|", "-", "+", "x", "o", "O", ".", "*", "//", "\\\\"]
# Create a dictionary to map models to hatches
model_hatches = {
model: hatches[i % len(hatches)]
for i, model in enumerate(metrics_df["model"].unique())
}
# Apply hatches based on the model
num_vars = len(df_melted["variable"].unique())
for i, bar in enumerate(barplot.patches):
model = df_melted["model"].iloc[i // num_vars]
bar.set_hatch(model_hatches[model])
# Manually update legend to match the bar hatches
handles, labels = barplot.get_legend_handles_labels()
for handle, model in zip(handles, metrics_df["model"].unique()):
handle.set_hatch(model_hatches[model])
barplot.set_xticklabels(["METEOR", "BLEU-1", "ROUGE-L"])
for p in barplot.patches:
if p.get_height() == 0:
continue
barplot.annotate(
f"{p.get_height():.2f}",
(p.get_x() + p.get_width() / 2.0, p.get_height()),
ha="center",
va="center",
xytext=(0, 10),
textcoords="offset points",
)
barplot.set(ylim=ylim, ylabel="Scores", xlabel="Metrics")
plt.legend(bbox_to_anchor=(0.5, -0.1), loc="upper center")
plt.show()
def plot_times(perf_df, ylim=0.421):
# Adjusted code to put "train-time" bars in red at the bottom
fig, ax1 = plt.subplots(figsize=(12, 10))
color_train = "tab:red"
color_eval = "orange"
ax1.set_xlabel("Models")
ax1.set_ylabel("Time (mins)")
ax1.set_xticks(range(len(perf_df["model"]))) # Set x-ticks positions
ax1.set_xticklabels(perf_df["model"], rotation=90)
# Plot "train-time" first so it's at the bottom
ax1.bar(
perf_df["model"],
perf_df["train-time(mins)"],
color=color_train,
label="train-time",
)
# Then, plot "eval-time" on top of "train-time"
ax1.bar(
perf_df["model"],
perf_df["eval-time(mins)"],
bottom=perf_df["train-time(mins)"],
color=color_eval,
label="eval-time",
)
ax1.tick_params(axis="y")
ax1.legend(loc="upper left")
if "meteor" in perf_df.columns:
ax2 = ax1.twinx()
color_meteor = "tab:blue"
ax2.set_ylabel("METEOR", color=color_meteor)
ax2.plot(
perf_df["model"],
perf_df["meteor"],
color=color_meteor,
marker="o",
label="meteor",
)
ax2.tick_params(axis="y", labelcolor=color_meteor)
ax2.legend(loc="upper right")
ax2.set_ylim(ax2.get_ylim()[0], ylim)
# Show numbers in bars
for p in ax1.patches:
height = p.get_height()
if height == 0: # Skip bars with height 0
continue
ax1.annotate(
f"{height:.2f}",
(p.get_x() + p.get_width() / 2.0, p.get_y() + height),
ha="center",
va="center",
xytext=(0, -10),
textcoords="offset points",
)
fig.tight_layout()
plt.show()
def translate_via_openai(
text, translation_prompt, max_tokens=None, model="gpt-4o-mini", base_url=None
):
llm = ChatOpenAI(
model=model,
temperature=0,
max_tokens=max_tokens,
timeout=None,
max_retries=2,
base_url=base_url,
)
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are a helpful assistant that translates Chinese to English.",
),
(
"human",
translation_prompt,
),
]
)
chain = prompt | llm
response = chain.invoke(
{
"input": text,
}
)
return response.content
def eval_openai(num_shots, datasets, model="gpt-4o-mini", max_new_tokens=300):
translation_prompt = get_few_shot_prompt(datasets["train"], num_shots=num_shots)
eval_dataset = datasets["test"]
total = len(eval_dataset)
predictions = []
for i in tqdm(range(total)):
output = translate_via_openai(
eval_dataset["chinese"][i],
translation_prompt,
model=model,
max_tokens=max_new_tokens,
)
predictions.append(output)
return predictions
def convert_time_to_seconds(time_str):
# print(f"converting time_str: {time_str}")
# Split the time string into its components
time_parts = list(map(int, time_str.split(":")))
# Initialize total minutes
total_seconds = 0
# Calculate total minutes based on the number of parts
if len(time_parts) == 3: # HH:MM:SS
hours, minutes, seconds = time_parts
total_seconds = hours * 3600 + minutes * 60 + seconds
elif len(time_parts) == 2: # MM:SS
minutes, seconds = time_parts
total_seconds = minutes * 60 + seconds
elif len(time_parts) == 1: # SS
seconds = time_parts[0]
total_seconds = seconds
return total_seconds
def process_log_file(log_file, total_entries, variant):
time_pattern = re.compile(r"\[(.{5,10})<00:00")
metrics_pattern = re.compile(rf"(.*)/{variant}-(.*) metrics:")
model = []
shots = []
eval_time = []
with open(log_file, "r") as f:
try:
for line in f:
matches = time_pattern.search(line)
if matches:
time_pattern_matches = matches
else:
matches = metrics_pattern.search(line)
if matches:
metrics_pattern_matches = matches
groups = metrics_pattern_matches.groups()
model.append(groups[0].split("/checkpoint")[0])
shots.append(groups[1])
groups = time_pattern_matches.groups()
time_str = groups[0]
eval_time.append(
convert_time_to_seconds(time_str) / total_entries
)
except Exception as e:
print(f"Error processing log file: {log_file}")
print(e)
df = pd.DataFrame(
{
"model": model,
variant: shots,
"eval_time": eval_time,
}
)
return df
def load_eval_times(logs_folder, total_entries=1133, variant="shots"):
# Get a list of all files in the logs folder
log_files = glob.glob(os.path.join(logs_folder, "*"))
log_files.sort()
time_df = pd.DataFrame({"model": [], variant: [], "eval_time": []})
for log_file in log_files:
print(f"Loading content of {log_file}")
df = process_log_file(log_file, total_entries, variant)
time_df = pd.concat([time_df, df], ignore_index=True)
time_df[variant] = time_df[variant].apply(
lambda x: x if variant == "rpp" else int(x)
)
# Keep the last occurrence of each duplicate
return time_df.drop_duplicates(subset=["model", variant], keep="last")
def load_alpaca_data(data_path):
alpaca_data_path = "data/alpaca_mac.json"
if os.path.exists(alpaca_data_path):
print("loading existing data from:", alpaca_data_path)
data = pd.read_json(alpaca_data_path, orient="records", lines=False)
return data
datasets = load_translation_dataset(data_path)
prompt_template = get_few_shot_prompt(datasets["train"], num_shots=0)
df_train = datasets["train"].to_pandas()
df_train["instruction"] = df_train.apply(
lambda x: prompt_template.format(input=x["chinese"]), axis=1
)
df_alpaca = pd.DataFrame(
{
"system": [system_prompt] * len(df_train),
"instruction": df_train["instruction"].to_list(),
"input": [""] * len(df_train),
"output": df_train["english"].to_list(),
}
)
df_alpaca.to_json(alpaca_data_path, orient="records", lines=False, indent=2)
return df_alpaca
def load_openai_training_data(
data_path, openai_data_path="datasets/mac/openai-training.jsonl"
):
if os.path.exists(openai_data_path):
print("loading existing data from:", openai_data_path)
data = pd.read_json(openai_data_path, orient="records", lines=True)
return data
datasets = load_translation_dataset(data_path)
prompt_template = get_few_shot_prompt(datasets["train"], num_shots=0)
df_train = datasets["train"].to_pandas()
messages = []
for i, row in df_train.iterrows():
messages.append(
[
{
"role": "system",
"content": system_prompt,
},
{
"role": "user",
"content": prompt_template.format(input=row["chinese"]),
},
{
"role": "assistant",
"content": row["english"],
},
]
)
df_openai = pd.DataFrame(
{
"messages": messages,
}
)
df_openai.to_json(openai_data_path, orient="records", lines=True)
return df_openai
|