File size: 1,775 Bytes
e1e71f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
base_model: shenzhi-wang/Llama3.1-8B-Chinese-Chat
library_name: peft
license: other
tags:
- llama-factory
- lora
- generated_from_trainer
model-index:
- name: Llama3.1-8B-Chinese-Chat
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Llama3.1-8B-Chinese-Chat

This model is a fine-tuned version of [shenzhi-wang/Llama3.1-8B-Chinese-Chat](https://huggingface.co/shenzhi-wang/Llama3.1-8B-Chinese-Chat) on the alpaca_mac dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7097

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 6.0

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.7323        | 0.9964 | 35   | 1.6576          |
| 1.5369        | 1.9929 | 70   | 1.5469          |
| 1.3988        | 2.9893 | 105  | 1.5315          |
| 1.1671        | 3.9858 | 140  | 1.5979          |
| 1.0609        | 4.9822 | 175  | 1.6828          |
| 0.9885        | 5.9786 | 210  | 1.7097          |


### Framework versions

- PEFT 0.11.1
- Transformers 4.43.3
- Pytorch 2.4.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1