File size: 3,249 Bytes
328b268 6011708 328b268 e182c41 328b268 bf1e59b 328b268 6011708 328b268 6b469d2 328b268 d5af465 328b268 3ca5bd8 328b268 bf1e59b 3ca5bd8 6011708 3ca5bd8 6011708 328b268 3ca5bd8 2826548 3ca5bd8 328b268 3ca5bd8 d5af465 328b268 95d2e5f 6011708 95d2e5f 6011708 3ca5bd8 328b268 3ca5bd8 4cae0a4 bf1e59b 734948a 4cae0a4 734948a bf1e59b 4cae0a4 734948a bf1e59b 734948a 3ca5bd8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
import abc
import os
import time
import urllib
from queue import Queue
from threading import Thread
from typing import List, Optional
from langchain.chains.base import Chain
from app_modules.llm_loader import LLMLoader, TextIteratorStreamer
from app_modules.utils import remove_extra_spaces
class LLMInference(metaclass=abc.ABCMeta):
llm_loader: LLMLoader
chain: Chain
def __init__(self, llm_loader):
self.llm_loader = llm_loader
self.chain = None
@abc.abstractmethod
def create_chain(self) -> Chain:
pass
def get_chain(self) -> Chain:
if self.chain is None:
self.chain = self.create_chain()
return self.chain
def run_chain(self, chain, inputs, callbacks: Optional[List] = []):
return chain(inputs, callbacks)
def call_chain(
self,
inputs,
streaming_handler,
q: Queue = None,
testing: bool = False,
):
print(inputs)
if self.llm_loader.streamer.for_huggingface:
self.llm_loader.lock.acquire()
try:
self.llm_loader.streamer.reset(q)
chain = self.get_chain()
result = (
self._run_chain_with_streaming_handler(
chain, inputs, streaming_handler, testing
)
if streaming_handler is not None
else self.run_chain(chain, inputs)
)
if "answer" in result:
result["answer"] = remove_extra_spaces(result["answer"])
base_url = os.environ.get("PDF_FILE_BASE_URL")
if base_url is not None and len(base_url) > 0:
documents = result["source_documents"]
for doc in documents:
source = doc.metadata["source"]
title = source.split("/")[-1]
doc.metadata["url"] = f"{base_url}{urllib.parse.quote(title)}"
return result
finally:
if self.llm_loader.streamer.for_huggingface:
self.llm_loader.lock.release()
def _execute_chain(self, chain, inputs, q, sh):
q.put(self.run_chain(chain, inputs, callbacks=[sh]))
def _run_chain_with_streaming_handler(
self, chain, inputs, streaming_handler, testing
):
que = Queue()
t = Thread(
target=self._execute_chain,
args=(chain, inputs, que, streaming_handler),
)
t.start()
if self.llm_loader.streamer.for_huggingface:
count = (
2
if "chat_history" in inputs and len(inputs.get("chat_history")) > 0
else 1
)
while count > 0:
try:
for token in self.llm_loader.streamer:
if not testing:
streaming_handler.on_llm_new_token(token)
self.llm_loader.streamer.reset()
count -= 1
except Exception:
if not testing:
print("nothing generated yet - retry in 0.5s")
time.sleep(0.5)
t.join()
return que.get()
|