File size: 5,508 Bytes
7f9d16c 815128e c2cb992 208786a 7f9d16c c2cb992 815128e 7f9d16c 815128e e182c41 2826548 7f9d16c e182c41 815128e c2cb992 2826548 4821924 815128e e182c41 815128e e182c41 815128e 7f9d16c c2cb992 7f9d16c 815128e 7f9d16c 815128e c2cb992 e182c41 7d1a192 e182c41 2826548 4821924 2826548 7d1a192 2826548 e182c41 4821924 e182c41 2826548 e182c41 2826548 e182c41 2826548 a905cd1 2826548 e182c41 815128e c2cb992 e182c41 815128e c2cb992 e182c41 815128e 7f9d16c e182c41 815128e 7d1a192 815128e 208786a 7f9d16c 208786a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
# project/test.py
import os
import sys
import unittest
from timeit import default_timer as timer
from langchain.callbacks.base import BaseCallbackHandler
from langchain.schema import HumanMessage
from app_modules.init import app_init
from app_modules.llm_chat_chain import ChatChain
from app_modules.llm_loader import LLMLoader
from app_modules.utils import get_device_types, print_llm_response
class TestLLMLoader(unittest.TestCase):
question = os.environ.get("CHAT_QUESTION")
def run_test_case(self, llm_model_type, query):
n_threds = int(os.environ.get("NUMBER_OF_CPU_CORES") or "4")
hf_embeddings_device_type, hf_pipeline_device_type = get_device_types()
print(f"hf_embeddings_device_type: {hf_embeddings_device_type}")
print(f"hf_pipeline_device_type: {hf_pipeline_device_type}")
llm_loader = LLMLoader(llm_model_type)
start = timer()
llm_loader.init(
n_threds=n_threds, hf_pipeline_device_type=hf_pipeline_device_type
)
end = timer()
print(f"Model loaded in {end - start:.3f}s")
result = llm_loader.llm(
[HumanMessage(content=query)] if llm_model_type == "openai" else query
)
end2 = timer()
print(f"Inference completed in {end2 - end:.3f}s")
print(result)
def test_openai(self):
self.run_test_case("openai", self.question)
def test_llamacpp(self):
self.run_test_case("llamacpp", self.question)
def test_gpt4all_j(self):
self.run_test_case("gpt4all-j", self.question)
def test_huggingface(self):
self.run_test_case("huggingface", self.question)
def test_hftgi(self):
self.run_test_case("hftgi", self.question)
class TestChatChain(unittest.TestCase):
question = os.environ.get("CHAT_QUESTION")
def run_test_case(self, llm_model_type, query):
n_threds = int(os.environ.get("NUMBER_OF_CPU_CORES") or "4")
hf_embeddings_device_type, hf_pipeline_device_type = get_device_types()
print(f"hf_embeddings_device_type: {hf_embeddings_device_type}")
print(f"hf_pipeline_device_type: {hf_pipeline_device_type}")
llm_loader = LLMLoader(llm_model_type)
start = timer()
llm_loader.init(
n_threds=n_threds, hf_pipeline_device_type=hf_pipeline_device_type
)
chat = ChatChain(llm_loader)
end = timer()
print(f"Model loaded in {end - start:.3f}s")
inputs = {"question": query}
result = chat.call_chain(inputs, None)
end2 = timer()
print(f"Inference completed in {end2 - end:.3f}s")
print(result)
inputs = {"question": "how many people?"}
result = chat.call_chain(inputs, None)
end3 = timer()
print(f"Inference completed in {end3 - end2:.3f}s")
print(result)
def test_openai(self):
self.run_test_case("openai", self.question)
def test_llamacpp(self):
self.run_test_case("llamacpp", self.question)
def test_gpt4all_j(self):
self.run_test_case("gpt4all-j", self.question)
def test_huggingface(self):
self.run_test_case("huggingface", self.question)
def test_hftgi(self):
self.run_test_case("hftgi", self.question)
class TestQAChain(unittest.TestCase):
qa_chain: any
question = os.environ.get("QA_QUESTION")
def run_test_case(self, llm_model_type, query):
start = timer()
os.environ["LLM_MODEL_TYPE"] = llm_model_type
qa_chain = app_init()[1]
end = timer()
print(f"App initialized in {end - start:.3f}s")
chat_history = []
inputs = {"question": query, "chat_history": chat_history}
result = qa_chain.call_chain(inputs, None)
end2 = timer()
print(f"Inference completed in {end2 - end:.3f}s")
print_llm_response(result)
chat_history.append((query, result["answer"]))
inputs = {"question": "tell me more", "chat_history": chat_history}
result = qa_chain.call_chain(inputs, None)
end3 = timer()
print(f"Inference completed in {end3 - end2:.3f}s")
print_llm_response(result)
def test_openai(self):
self.run_test_case("openai", self.question)
def test_llamacpp(self):
self.run_test_case("llamacpp", self.question)
def test_gpt4all_j(self):
self.run_test_case("gpt4all-j", self.question)
def test_huggingface(self):
self.run_test_case("huggingface", self.question)
def test_hftgi(self):
self.run_test_case("hftgi", self.question)
def chat():
start = timer()
llm_loader = app_init()[0]
end = timer()
print(f"Model loaded in {end - start:.3f}s")
chat_chain = ChatChain(llm_loader)
chat_history = []
chat_start = timer()
while True:
query = input("Please enter your question: ")
query = query.strip()
if query.lower() == "exit":
break
print("\nQuestion: " + query)
start = timer()
result = chat_chain.call_chain(
{"question": query, "chat_history": chat_history}, None
)
end = timer()
print(f"Completed in {end - start:.3f}s")
chat_history.append((query, result["text"]))
chat_end = timer()
print(f"Total time used: {chat_end - chat_start:.3f}s")
if __name__ == "__main__":
if len(sys.argv) > 1 and sys.argv[1] == "chat":
chat()
else:
unittest.main()
|