File size: 2,152 Bytes
ee3a625
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d380674
 
ee3a625
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# setting device on GPU if available, else CPU
import os
import sys
from timeit import default_timer as timer
from typing import List

from langchain.document_loaders import PyPDFDirectoryLoader
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores.base import VectorStore
from langchain.vectorstores.chroma import Chroma
from langchain.vectorstores.faiss import FAISS

from app_modules.init import app_init, get_device_types
from app_modules.llm_summarize_chain import SummarizeChain


def load_documents(source_pdfs_path, urls) -> List:
    loader = PyPDFDirectoryLoader(source_pdfs_path, silent_errors=True)
    documents = loader.load()
    if urls is not None and len(urls) > 0:
        for doc in documents:
            source = doc.metadata["source"]
            filename = source.split("/")[-1]
            for url in urls:
                if url.endswith(filename):
                    doc.metadata["url"] = url
                    break
    return documents


def split_chunks(documents: List, chunk_size, chunk_overlap) -> List:
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=chunk_size, chunk_overlap=chunk_overlap
    )
    return text_splitter.split_documents(documents)


llm_loader = app_init(False)[0]

source_pdfs_path = (
    sys.argv[1] if len(sys.argv) > 1 else os.environ.get("SOURCE_PDFS_PATH")
)
chunk_size = sys.argv[2] if len(sys.argv) > 2 else os.environ.get("CHUNCK_SIZE")
chunk_overlap = sys.argv[3] if len(sys.argv) > 3 else os.environ.get("CHUNK_OVERLAP")

sources = load_documents(source_pdfs_path, None)

print(f"Splitting {len(sources)} PDF pages in to chunks ...")

chunks = split_chunks(
    sources, chunk_size=int(chunk_size), chunk_overlap=int(chunk_overlap)
)

print(f"Summarizing {len(chunks)} chunks ...")
start = timer()

summarize_chain = SummarizeChain(llm_loader)
result = summarize_chain.call_chain(
    {"input_documents": chunks},
    None,
    None,
    True,
)

end = timer()
print(f"Completed in {end - start:.3f}s")

print("\n\n***Summary:")
print(result["output_text"])