File size: 33,635 Bytes
24a5f16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed120b4
24a5f16
ed120b4
24a5f16
 
 
ed120b4
24a5f16
 
 
 
 
ed120b4
24a5f16
 
 
ed120b4
24a5f16
 
 
ed120b4
24a5f16
 
ed120b4
 
24a5f16
 
ed120b4
 
 
 
 
 
 
 
7206088
dbbe798
ed120b4
24a5f16
 
 
 
 
 
 
 
 
7206088
 
 
 
 
 
 
 
 
 
24a5f16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7206088
24a5f16
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
import os
import json
import numpy as np
import pandas as pd
import gradio as gr
from huggingface_hub import HfApi, hf_hub_download


OWNER = "inceptionai"
DATASET_REPO_ID = f"{OWNER}/requests-dataset"

HEADER = """
<center>
<h1>AraGen Leaderboard: Generative Tasks Evaluation of Arabic LLMs</h1>
</center>

<br></br>

<p>This leaderboard introduces generative tasks evaluation for Arabic Large Language Models (LLMs). Powered by the new <strong>3C3H</strong> evaluation measure, this framework delivers a transparent, robust, and holistic evaluation system that balances factual accuracy and usability assessment for a production ready setting.</p>

<p>For more details, please consider going through the technical blogpost <a href="https://huggingface.co/blog/leaderboard-3c3h-aragen">here</a>.</p>
"""

ABOUT_SECTION = """
## About

The AraGen Leaderboard is designed to evaluate and compare the performance of Chat Arabic Large Language Models (LLMs) on a set of generative tasks. By leveraging the new **3C3H** evaluation measure which evaluate the model's output across six dimensions β€”Correctness, Completeness, Conciseness, Helpfulness, Honesty, and Harmlessnessβ€” the leaderboard provides a comprehensive and holistic evaluation of a model's performance in generating human-like and ethically responsible content.

### Why Focus on Chat Models?

AraGen Leaderboard β€”And 3C3H in generalβ€” is specifically designed to assess **chat models**, which interact in conversational settings, intended for end user interaction and require a blend of factual accuracy and user-centric dialogue capabilities. While it is technically possible to submit foundational models, we kindly ask users to refrain from doing so. For evaluations of foundational models using likelihood accuracy based benchmarks, please refer to the [Open Arabic LLM Leaderboard (OALL)](https://huggingface.co/spaces/OALL/Open-Arabic-LLM-Leaderboard).

### How to Submit Your Model?

Navigate to the submission section below to submit your open chat model from the HuggingFace Hub for evaluation. Ensure that your model is public and the submmited metadata (precision, revision, #params) is accurate.

### Contact

For any inquiries or assistance, feel free to reach out through the community tab at [Inception AraGen Community](https://huggingface.co/spaces/inceptionai/AraGen-Leaderboard/discussions) or via [email](mailto:ali.filali@inceptionai.ai).
"""

CITATION_BUTTON_LABEL = """
Copy the following snippet to cite these results
"""

CITATION_BUTTON_TEXT = """
@misc{AraGen,
  author = {El Filali, Ali and Sengupta, Neha and Abouelseoud, Arwa and Nakov, Preslav and Fourrier, ClΓ©mentine},
  title = {Rethinking LLM Evaluation with 3C3H: AraGen Benchmark and Leaderboard},
  year = {2024},
  publisher = {Inception},
  howpublished = "url{https://huggingface.co/spaces/inceptionai/AraGen-Leaderboard}"
}
"""


def load_results():
    # Get the current directory of the script and construct the path to results.json
    current_dir = os.path.dirname(os.path.abspath(__file__))
    results_file = os.path.join(current_dir, "assets", "results", "results.json")
    
    # Load the JSON data from the specified file
    with open(results_file, 'r') as f:
        data = json.load(f)
    
    # Filter out any entries that only contain '_last_sync_timestamp'
    filtered_data = []
    for entry in data:
        # If '_last_sync_timestamp' is the only key, skip it
        if len(entry.keys()) == 1 and "_last_sync_timestamp" in entry:
            continue
        filtered_data.append(entry)
    
    data = filtered_data
    
    # Lists to collect data
    data_3c3h = []
    data_tasks = []
    
    for model_data in data:
        # Extract model meta data
        meta = model_data.get('Meta', {})
        model_name = meta.get('Model Name', 'UNK')
        revision = meta.get('Revision', 'UNK')
        precision = meta.get('Precision', 'UNK')
        params = meta.get('Params', 'UNK')
        license = meta.get('License', 'UNK')
        
        # Convert "Model Size" to numeric, treating "UNK" as infinity
        try:
            model_size_numeric = float(params)
        except (ValueError, TypeError):
            model_size_numeric = np.inf
        
        # 3C3H Scores
        scores_data = model_data.get('claude-3.5-sonnet Scores', {})
        scores_3c3h = scores_data.get('3C3H Scores', {})
        scores_tasks = scores_data.get('Tasks Scores', {})
        
        # Multiply scores by 100 to get percentages (keep them as numeric values)
        formatted_scores_3c3h = {k: v*100 for k, v in scores_3c3h.items()}
        formatted_scores_tasks = {k: v*100 for k, v in scores_tasks.items()}
        
        # For 3C3H Scores DataFrame
        data_entry_3c3h = {
            'Model Name': model_name,
            'Revision': revision,
            'License': license,
            'Precision': precision,
            'Model Size': model_size_numeric,  # Numeric value for sorting
            '3C3H Score': formatted_scores_3c3h.get("3C3H Score", np.nan),
            'Correctness': formatted_scores_3c3h.get("Correctness", np.nan),
            'Completeness': formatted_scores_3c3h.get("Completeness", np.nan),
            'Conciseness': formatted_scores_3c3h.get("Conciseness", np.nan),
            'Helpfulness': formatted_scores_3c3h.get("Helpfulness", np.nan),
            'Honesty': formatted_scores_3c3h.get("Honesty", np.nan),
            'Harmlessness': formatted_scores_3c3h.get("Harmlessness", np.nan),
        }
        data_3c3h.append(data_entry_3c3h)
        
        # For Tasks Scores DataFrame
        data_entry_tasks = {
            'Model Name': model_name,
            'Revision': revision,
            'License': license,
            'Precision': precision,
            'Model Size': model_size_numeric,  # Numeric value for sorting
            **formatted_scores_tasks
        }
        data_tasks.append(data_entry_tasks)
    
    df_3c3h = pd.DataFrame(data_3c3h)
    df_tasks = pd.DataFrame(data_tasks)
    
    # Round the numeric score columns to 4 decimal places
    score_columns_3c3h = ['3C3H Score', 'Correctness', 'Completeness', 'Conciseness', 'Helpfulness', 'Honesty', 'Harmlessness']
    df_3c3h[score_columns_3c3h] = df_3c3h[score_columns_3c3h].round(4)
    
    # Replace np.inf with a large number in 'Model Size Filter' for filtering
    max_model_size_value = 1000  # Define a maximum value
    df_3c3h['Model Size Filter'] = df_3c3h['Model Size'].replace(np.inf, max_model_size_value)
    
    # Sort df_3c3h by '3C3H Score' descending if column exists
    if '3C3H Score' in df_3c3h.columns:
        df_3c3h = df_3c3h.sort_values(by='3C3H Score', ascending=False)
        df_3c3h.insert(0, 'Rank', range(1, len(df_3c3h) + 1))  # Add Rank column starting from 1
    else:
        df_3c3h.insert(0, 'Rank', range(1, len(df_3c3h) + 1))
    
    # Extract task columns
    task_columns = [col for col in df_tasks.columns if col not in ['Model Name', 'Revision', 'License', 'Precision', 'Model Size', 'Model Size Filter']]
    
    # Round the task score columns to 4 decimal places
    if task_columns:
        df_tasks[task_columns] = df_tasks[task_columns].round(4)
    
    # Replace np.inf with a large number in 'Model Size Filter' for filtering
    df_tasks['Model Size Filter'] = df_tasks['Model Size'].replace(np.inf, max_model_size_value)
    
    # Sort df_tasks by the first task column if it exists
    if task_columns:
        first_task = task_columns[0]
        df_tasks = df_tasks.sort_values(by=first_task, ascending=False)
        df_tasks.insert(0, 'Rank', range(1, len(df_tasks) + 1))  # Add Rank column starting from 1
    else:
        df_tasks = df_tasks.sort_values(by='Model Name', ascending=True)
        df_tasks.insert(0, 'Rank', range(1, len(df_tasks) + 1))
    
    return df_3c3h, df_tasks, task_columns

def load_requests(status_folder):
    api = HfApi()
    requests_data = []
    folder_path_in_repo = status_folder  # 'pending', 'finished', or 'failed'

    hf_api_token = os.environ.get('HF_API_TOKEN', None)

    try:
        # List files in the dataset repository
        files_info = api.list_repo_files(
            repo_id=DATASET_REPO_ID,
            repo_type="dataset",
            token=hf_api_token
        )
    except Exception as e:
        print(f"Error accessing dataset repository: {e}")
        return pd.DataFrame()  # Return empty DataFrame if repository not found or inaccessible

    # Filter files in the desired folder
    files_in_folder = [f for f in files_info if f.startswith(f"{folder_path_in_repo}/") and f.endswith('.json')]

    for file_path in files_in_folder:
        try:
            # Download the JSON file
            local_file_path = hf_hub_download(
                repo_id=DATASET_REPO_ID,
                filename=file_path,
                repo_type="dataset",
                token=hf_api_token
            )
            # Load JSON data
            with open(local_file_path, 'r') as f:
                request = json.load(f)
            requests_data.append(request)
        except Exception as e:
            print(f"Error loading file {file_path}: {e}")
            continue  # Skip files that can't be loaded

    df = pd.DataFrame(requests_data)
    return df

def submit_model(model_name, revision, precision, params, license):
    # Load existing evaluations
    df_3c3h, df_tasks, _ = load_results()
    existing_models_results = df_3c3h[['Model Name', 'Revision', 'Precision']]

    # Handle 'Missing' precision
    if precision == 'Missing':
        precision = None
    else:
        precision = precision.strip().lower()

    # Load pending and finished requests from the dataset repository
    df_pending = load_requests('pending')
    df_finished = load_requests('finished')

    # Check if model is already evaluated
    model_exists_in_results = ((existing_models_results['Model Name'] == model_name) &
                               (existing_models_results['Revision'] == revision) &
                               (existing_models_results['Precision'] == precision)).any()
    if model_exists_in_results:
        return f"**Model '{model_name}' with revision '{revision}' and precision '{precision}' has already been evaluated.**"

    # Check if model is in pending requests
    if not df_pending.empty:
        existing_models_pending = df_pending[['model_name', 'revision', 'precision']]
        model_exists_in_pending = ((existing_models_pending['model_name'] == model_name) &
                                   (existing_models_pending['revision'] == revision) &
                                   (existing_models_pending['precision'] == precision)).any()
        if model_exists_in_pending:
            return f"**Model '{model_name}' with revision '{revision}' and precision '{precision}' is already in the pending evaluations.**"

    # Check if model is in finished requests
    if not df_finished.empty:
        existing_models_finished = df_finished[['model_name', 'revision', 'precision']]
        model_exists_in_finished = ((existing_models_finished['model_name'] == model_name) &
                                    (existing_models_finished['revision'] == revision) &
                                    (existing_models_finished['precision'] == precision)).any()
        if model_exists_in_finished:
            return f"**Model '{model_name}' with revision '{revision}' and precision '{precision}' has already been evaluated.**"

    # Check if model exists on HuggingFace Hub
    api = HfApi()
    try:
        model_info = api.model_info(model_name)
    except Exception as e:
        return f"**Error: Could not find model '{model_name}' on HuggingFace Hub. Please ensure the model name is correct and the model is public.**"

    # Proceed with submission
    status = "PENDING"

    # Prepare the submission data
    submission = {
        "model_name": model_name,
        "license": license,
        "revision": revision,
        "precision": precision,
        "status": status,
        "params": params
    }

    # Serialize the submission to JSON
    submission_json = json.dumps(submission, indent=2)

    # Define the file path in the repository
    org_model = model_name.split('/')
    if len(org_model) != 2:
        return "**Please enter the full model name including the organization or username, e.g., 'inceptionai/jais-family-30b-8k'**"
    org, model_id = org_model
    precision_str = precision if precision else 'Missing'
    file_path_in_repo = f"pending/{org}/{model_id}_eval_request_{revision}_{precision_str}.json"

    # Upload the submission to the dataset repository
    try:
        hf_api_token = os.environ.get('HF_API_TOKEN', None)
        api.upload_file(
            path_or_fileobj=submission_json.encode('utf-8'),
            path_in_repo=file_path_in_repo,
            repo_id=DATASET_REPO_ID,
            repo_type="dataset",
            token=hf_api_token
        )
    except Exception as e:
        return f"**Error: Could not submit the model. {str(e)}**"

    return f"**Model '{model_name}' has been submitted for evaluation.**"

def main():
    df_3c3h, df_tasks, task_columns = load_results()

    # Extract unique Precision and License values for filters
    precision_options_3c3h = sorted(df_3c3h['Precision'].dropna().unique().tolist())
    precision_options_3c3h = [p for p in precision_options_3c3h if p != 'UNK']
    precision_options_3c3h.append('Missing')

    license_options_3c3h = sorted(df_3c3h['License'].dropna().unique().tolist())
    license_options_3c3h = [l for l in license_options_3c3h if l != 'UNK']
    license_options_3c3h.append('Missing')

    precision_options_tasks = sorted(df_tasks['Precision'].dropna().unique().tolist())
    precision_options_tasks = [p for p in precision_options_tasks if p != 'UNK']
    precision_options_tasks.append('Missing')

    license_options_tasks = sorted(df_tasks['License'].dropna().unique().tolist())
    license_options_tasks = [l for l in license_options_tasks if l != 'UNK']
    license_options_tasks.append('Missing')

    # Get min and max model sizes for sliders, handling 'inf' values
    min_model_size_3c3h = int(df_3c3h['Model Size Filter'].min())
    max_model_size_3c3h = int(df_3c3h['Model Size Filter'].max())

    min_model_size_tasks = int(df_tasks['Model Size Filter'].min())
    max_model_size_tasks = int(df_tasks['Model Size Filter'].max())

    # Exclude 'Model Size Filter' from column selectors
    column_choices_3c3h = [col for col in df_3c3h.columns if col != 'Model Size Filter']
    column_choices_tasks = [col for col in df_tasks.columns if col != 'Model Size Filter']

    with gr.Blocks() as demo:
        gr.HTML(HEADER)
        
        with gr.Tabs():
            with gr.Tab("Leaderboard"):
                with gr.Tabs():
                    with gr.Tab("3C3H Scores"):
                        with gr.Row():
                            search_box_3c3h = gr.Textbox(
                                placeholder="Search for models...", 
                                label="Search", 
                                interactive=True
                            )
                        with gr.Row():
                            column_selector_3c3h = gr.CheckboxGroup(
                                choices=column_choices_3c3h,
                                value=[
                                    'Rank', 'Model Name', '3C3H Score', 'Correctness', 'Completeness',
                                    'Conciseness', 'Helpfulness', 'Honesty', 'Harmlessness'
                                ],
                                label="Select columns to display",
                            )
                        with gr.Row():
                            license_filter_3c3h = gr.CheckboxGroup(
                                choices=license_options_3c3h,
                                value=license_options_3c3h.copy(),  # Default all selected
                                label="Filter by License",
                            )
                            precision_filter_3c3h = gr.CheckboxGroup(
                                choices=precision_options_3c3h,
                                value=precision_options_3c3h.copy(),  # Default all selected
                                label="Filter by Precision",
                            )
                        with gr.Row():
                            model_size_min_filter_3c3h = gr.Slider(
                                minimum=min_model_size_3c3h,
                                maximum=max_model_size_3c3h,
                                value=min_model_size_3c3h,
                                step=1,
                                label="Minimum Model Size",
                                interactive=True
                            )
                            model_size_max_filter_3c3h = gr.Slider(
                                minimum=min_model_size_3c3h,
                                maximum=max_model_size_3c3h,
                                value=max_model_size_3c3h,
                                step=1,
                                label="Maximum Model Size",
                                interactive=True
                            )
                        
                        leaderboard_3c3h = gr.Dataframe(
                            df_3c3h[['Rank', 'Model Name', '3C3H Score', 'Correctness', 'Completeness',
                                   'Conciseness', 'Helpfulness', 'Honesty', 'Harmlessness']],
                            interactive=False
                        )
                        
                        def filter_df_3c3h(search_query, selected_cols, precision_filters, license_filters, min_size, max_size):
                            filtered_df = df_3c3h.copy()
                            
                            # Ensure min_size <= max_size
                            if min_size > max_size:
                                min_size, max_size = max_size, min_size
                            
                            # Apply search filter
                            if search_query:
                                filtered_df = filtered_df[filtered_df['Model Name'].str.contains(search_query, case=False, na=False)]
                            
                            # Apply Precision filter
                            if precision_filters:
                                include_missing = 'Missing' in precision_filters
                                selected_precisions = [p for p in precision_filters if p != 'Missing']
                                if include_missing:
                                    filtered_df = filtered_df[
                                        (filtered_df['Precision'].isin(selected_precisions)) |
                                        (filtered_df['Precision'] == 'UNK') |
                                        (filtered_df['Precision'].isna())
                                    ]
                                else:
                                    filtered_df = filtered_df[filtered_df['Precision'].isin(selected_precisions)]
                            
                            # Apply License filter
                            if license_filters:
                                include_missing = 'Missing' in license_filters
                                selected_licenses = [l for l in license_filters if l != 'Missing']
                                if include_missing:
                                    filtered_df = filtered_df[
                                        (filtered_df['License'].isin(selected_licenses)) |
                                        (filtered_df['License'] == 'UNK') |
                                        (filtered_df['License'].isna())
                                    ]
                                else:
                                    filtered_df = filtered_df[filtered_df['License'].isin(selected_licenses)]
                            
                            # Apply Model Size filter
                            filtered_df = filtered_df[
                                (filtered_df['Model Size Filter'] >= min_size) &
                                (filtered_df['Model Size Filter'] <= max_size)
                            ]
                            
                            # Remove existing 'Rank' column if present
                            if 'Rank' in filtered_df.columns:
                                filtered_df = filtered_df.drop(columns=['Rank'])
                            
                            # Recalculate Rank after filtering
                            filtered_df = filtered_df.reset_index(drop=True)
                            filtered_df.insert(0, 'Rank', range(1, len(filtered_df) + 1))
                            
                            # Ensure selected columns are present
                            selected_cols = [col for col in selected_cols if col in filtered_df.columns]
                            
                            return filtered_df[selected_cols]
                        
                        # Bind the filter function to the appropriate events
                        filter_inputs_3c3h = [
                            search_box_3c3h,
                            column_selector_3c3h,
                            precision_filter_3c3h,
                            license_filter_3c3h,
                            model_size_min_filter_3c3h,
                            model_size_max_filter_3c3h
                        ]
                        search_box_3c3h.submit(
                            filter_df_3c3h,
                            inputs=filter_inputs_3c3h,
                            outputs=leaderboard_3c3h
                        )
                        
                        # Bind change events for CheckboxGroups and sliders
                        for component in filter_inputs_3c3h:
                            component.change(
                                filter_df_3c3h,
                                inputs=filter_inputs_3c3h,
                                outputs=leaderboard_3c3h
                            )
                    
                    with gr.Tab("Tasks Scores"):
                        gr.Markdown("""
                                    Note: This Table is sorted based on the First Task (Question Answering)
                                    """)
                        
                        with gr.Row():
                            search_box_tasks = gr.Textbox(
                                placeholder="Search for models...", 
                                label="Search", 
                                interactive=True
                            )
                        with gr.Row():
                            column_selector_tasks = gr.CheckboxGroup(
                                choices=column_choices_tasks,
                                value=['Rank', 'Model Name'] + task_columns,
                                label="Select columns to display",
                            )
                        with gr.Row():
                            license_filter_tasks = gr.CheckboxGroup(
                                choices=license_options_tasks,
                                value=license_options_tasks.copy(),  # Default all selected
                                label="Filter by License",
                            )
                            precision_filter_tasks = gr.CheckboxGroup(
                                choices=precision_options_tasks,
                                value=precision_options_tasks.copy(),  # Default all selected
                                label="Filter by Precision",
                            )
                        with gr.Row():
                            model_size_min_filter_tasks = gr.Slider(
                                minimum=min_model_size_tasks,
                                maximum=max_model_size_tasks,
                                value=min_model_size_tasks,
                                step=1,
                                label="Minimum Model Size",
                                interactive=True
                            )
                            model_size_max_filter_tasks = gr.Slider(
                                minimum=min_model_size_tasks,
                                maximum=max_model_size_tasks,
                                value=max_model_size_tasks,
                                step=1,
                                label="Maximum Model Size",
                                interactive=True
                            )
                        
                        leaderboard_tasks = gr.Dataframe(
                            df_tasks[['Rank', 'Model Name'] + task_columns],
                            interactive=False
                        )
                        
                        def filter_df_tasks(search_query, selected_cols, precision_filters, license_filters, min_size, max_size):
                            filtered_df = df_tasks.copy()
                            
                            # Ensure min_size <= max_size
                            if min_size > max_size:
                                min_size, max_size = max_size, min_size
                            
                            # Apply search filter
                            if search_query:
                                filtered_df = filtered_df[filtered_df['Model Name'].str.contains(search_query, case=False, na=False)]
                            
                            # Apply Precision filter
                            if precision_filters:
                                include_missing = 'Missing' in precision_filters
                                selected_precisions = [p for p in precision_filters if p != 'Missing']
                                if include_missing:
                                    filtered_df = filtered_df[
                                        (filtered_df['Precision'].isin(selected_precisions)) |
                                        (filtered_df['Precision'] == 'UNK') |
                                        (filtered_df['Precision'].isna())
                                    ]
                                else:
                                    filtered_df = filtered_df[filtered_df['Precision'].isin(selected_precisions)]
                            
                            # Apply License filter
                            if license_filters:
                                include_missing = 'Missing' in license_filters
                                selected_licenses = [l for l in license_filters if l != 'Missing']
                                if include_missing:
                                    filtered_df = filtered_df[
                                        (filtered_df['License'].isin(selected_licenses)) |
                                        (filtered_df['License'] == 'UNK') |
                                        (filtered_df['License'].isna())
                                    ]
                                else:
                                    filtered_df = filtered_df[filtered_df['License'].isin(selected_licenses)]
                            
                            # Apply Model Size filter
                            filtered_df = filtered_df[
                                (filtered_df['Model Size Filter'] >= min_size) &
                                (filtered_df['Model Size Filter'] <= max_size)
                            ]
                            
                            # Remove existing 'Rank' column if present
                            if 'Rank' in filtered_df.columns:
                                filtered_df = filtered_df.drop(columns=['Rank'])
                            
                            # Sort by the first task column if it exists
                            if task_columns:
                                first_task = task_columns[0]
                                filtered_df = filtered_df.sort_values(by=first_task, ascending=False)
                            else:
                                filtered_df = filtered_df.sort_values(by='Model Name', ascending=True)
                            
                            # Recalculate Rank after filtering
                            filtered_df = filtered_df.reset_index(drop=True)
                            filtered_df.insert(0, 'Rank', range(1, len(filtered_df) + 1))
                            
                            # Ensure selected columns are present
                            selected_cols = [col for col in selected_cols if col in filtered_df.columns]
                            
                            return filtered_df[selected_cols]
                        
                        # Bind the filter function to the appropriate events
                        filter_inputs_tasks = [
                            search_box_tasks,
                            column_selector_tasks,
                            precision_filter_tasks,
                            license_filter_tasks,
                            model_size_min_filter_tasks,
                            model_size_max_filter_tasks
                        ]
                        search_box_tasks.submit(
                            filter_df_tasks,
                            inputs=filter_inputs_tasks,
                            outputs=leaderboard_tasks
                        )
                        
                        # Bind change events for CheckboxGroups and sliders
                        for component in filter_inputs_tasks:
                            component.change(
                                filter_df_tasks,
                                inputs=filter_inputs_tasks,
                                outputs=leaderboard_tasks
                            )
            
            with gr.Tab("Submit Here"):
                gr.Markdown(ABOUT_SECTION)
                gr.Markdown("---")
                gr.Markdown("# Submit Your Model for Evaluation")
                with gr.Column():
                    model_name_input = gr.Textbox(
                        label="Model Name", 
                        placeholder="Enter the full model name from HuggingFace Hub (e.g., inceptionai/jais-family-30b-8k)"
                    )
                    revision_input = gr.Textbox(
                        label="Revision", 
                        placeholder="main", 
                        value="main"
                    )
                    precision_input = gr.Dropdown(
                        choices=["float16", "float32", "bfloat16", "8bit", "4bit"], 
                        label="Precision",
                        value="float16"
                    )
                    params_input = gr.Textbox(
                        label="Params", 
                        placeholder="Enter the approximate number of parameters as Integer (e.g., 7, 13, 30, 70 ...)"
                    )
                    # Changed from Dropdown to Textbox with default value "Open"
                    license_input = gr.Textbox(
                        label="License", 
                        placeholder="Enter the license type (Generic one is 'Open' in case no License is provided)", 
                        value="Open"
                    )
                    submit_button = gr.Button("Submit Model")
                    submission_result = gr.Markdown()

                    submit_button.click(
                        submit_model,
                        inputs=[model_name_input, revision_input, precision_input, params_input, license_input],
                        outputs=submission_result
                    )
                    
                    # Load pending, finished, and failed requests
                    df_pending = load_requests('pending')
                    df_finished = load_requests('finished')
                    df_failed = load_requests('failed')

                    # Display the tables
                    gr.Markdown("## Evaluation Status")
                    with gr.Accordion(f"Pending Evaluations ({len(df_pending)})", open=False):
                        if not df_pending.empty:
                            gr.Dataframe(df_pending)
                        else:
                            gr.Markdown("No pending evaluations.")
                    with gr.Accordion(f"Finished Evaluations ({len(df_finished)})", open=False):
                        if not df_finished.empty:
                            gr.Dataframe(df_finished)
                        else:
                            gr.Markdown("No finished evaluations.")
                    with gr.Accordion(f"Failed Evaluations ({len(df_failed)})", open=False):
                        if not df_failed.empty:
                            gr.Dataframe(df_failed)
                        else:
                            gr.Markdown("No failed evaluations.")
            with gr.Row():
                with gr.Accordion("πŸ“™ Citation", open=False):
                    citation_button = gr.Textbox(
                        value=CITATION_BUTTON_TEXT,
                        label=CITATION_BUTTON_LABEL,
                        lines=20,
                        elem_id="citation-button",
                        show_copy_button=True,
                    )

    demo.launch()

if __name__ == "__main__":
    main()