Spaces:
Running
Running
File size: 14,793 Bytes
2b5b9ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
import os
import torch
import librosa
from ldm.modules.encoders.open_clap import create_model
import numpy as np
from transformers import RobertaTokenizer
from ldm.modules.encoders.open_clap.factory import load_state_dict
import wget
import torchvision
from contextlib import suppress
import torchaudio
import torch.nn.functional as F
def int16_to_float32(x):
return (x / 32767.0).astype(np.float32)
def float32_to_int16(x):
x = np.clip(x, a_min=-1., a_max=1.)
return (x * 32767.).astype(np.int16)
class CLAP_Module(torch.nn.Module):
def __init__(self, enable_fusion=False, device=None, amodel= 'HTSAT-tiny', tmodel='roberta') -> None:
"""Initialize CLAP Model
Parameters
----------
enable_fusion: bool
if true, it will create the fusion clap model, otherwise non-fusion clap model (default: false)
device: str
if None, it will automatically detect the device (gpu or cpu)
amodel: str
audio encoder architecture, default: HTSAT-tiny
tmodel: str
text encoder architecture, default: roberta
"""
super(CLAP_Module, self).__init__()
if device is None:
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
precision = 'fp32'
if enable_fusion:
fusion_type = 'aff_2d'
model, model_cfg = create_model(
amodel,
tmodel,
precision=precision,
device=device,
enable_fusion=enable_fusion,
fusion_type=fusion_type
)
else:
model, model_cfg = create_model(
amodel,
tmodel,
precision=precision,
device=device,
enable_fusion=enable_fusion
)
self.enable_fusion = enable_fusion
self.model = model
self.model_cfg = model_cfg
self.tokenize = RobertaTokenizer.from_pretrained('roberta-base')
def tokenizer(self, text):
result = self.tokenize(
text,
padding="max_length",
truncation=True,
max_length=77,
return_tensors="pt",
)
# print("open_clap.wrapper tokenzie",result)
return result
def load_ckpt(self, ckpt = None, model_id = -1):
"""Load the pretrained checkpoint of CLAP model
Parameters
----------
ckpt: str
if ckpt is specified, the model will load this ckpt, otherwise the model will download the ckpt from zenodo. \n
For fusion model, it will download the 630k+audioset fusion model (id=3). For non-fusion model, it will download the 630k+audioset model (id=1).
model_id:
if model_id is specified, you can download our best ckpt, as:
id = 0 --> 630k non-fusion ckpt \n
id = 1 --> 630k+audioset non-fusion ckpt \n
id = 2 --> 630k fusion ckpt \n
id = 3 --> 630k+audioset fusion ckpt \n
Note that if your model is specied as non-fusion model but you download a fusion model ckpt, you will face an error.
"""
download_link = 'https://huggingface.co/lukewys/laion_clap/resolve/main/'
download_names = [
'630k-best.pt',
'630k-audioset-best.pt',
'630k-fusion-best.pt',
'630k-audioset-fusion-best.pt'
]
if ckpt is not None:
print(f'Load the specified checkpoint {ckpt} from users.')
else:
print(f'Load our best checkpoint in the paper.')
if model_id == -1:
model_id = 3 if self.enable_fusion else 1
package_dir = os.path.dirname(os.path.realpath(__file__))
weight_file_name = download_names[model_id]
ckpt = os.path.join(package_dir, weight_file_name)
if os.path.exists(ckpt):
print(f'The checkpoint is already downloaded')
else:
print('Downloading laion_clap weight files...')
ckpt = wget.download(download_link + weight_file_name, os.path.dirname(ckpt))
print('Download completed!')
print('Load Checkpoint...')
ckpt = load_state_dict(ckpt, skip_params=True)
self.model.load_state_dict(ckpt)
param_names = [n for n, p in self.model.named_parameters()]
for n in param_names:
print(n, "\t", "Loaded" if n in ckpt else "Unloaded")
def get_audio_embedding_from_filelist(self, x, use_tensor=False):
"""get audio embeddings from the audio file list
Parameters
----------
x: List[str] (N,):
an audio file list to extract features, audio files can have different lengths (as we have the feature fusion machanism)
use_tensor: boolean:
if True, it will return the torch tensor, preserving the gradient (default: False).
Returns
----------
audio_embed : numpy.darray | torch.Tensor (N,D):
audio embeddings that extracted from audio files
"""
self.model.eval()
audio_input = []
for f in x:
# load the waveform of the shape (T,), should resample to 48000
audio_waveform, _ = librosa.load(f, sr=48000)
# quantize
audio_waveform = int16_to_float32(float32_to_int16(audio_waveform))
audio_waveform = torch.from_numpy(audio_waveform).float()
temp_dict = {}
temp_dict = get_audio_features(
temp_dict, audio_waveform, 480000,
data_truncating='fusion' if self.enable_fusion else 'rand_trunc',
data_filling='repeatpad',
audio_cfg=self.model_cfg['audio_cfg'],
require_grad=audio_waveform.requires_grad
)
audio_input.append(temp_dict)
audio_embed = self.model.get_audio_embedding(audio_input)
if not use_tensor:
audio_embed = audio_embed.detach().cpu().numpy()
return audio_embed
def get_audio_embedding_from_data(self, x, use_tensor=False):
"""get audio embeddings from the audio data
Parameters
----------
x: np.darray | torch.Tensor (N,T):
audio data, must be mono audio tracks.
use_tensor: boolean:
if True, x should be the tensor input and the output will be the tesnor, preserving the gradient (default: False).
Note that if 'use tensor' is set to True, it will not do the quantize of the audio waveform (otherwise the gradient will not be preserved).
Returns
----------
audio embed: numpy.darray | torch.Tensor (N,D):
audio embeddings that extracted from audio files
"""
self.model.eval()
audio_input = []
for audio_waveform in x:
# quantize
if not use_tensor:
audio_waveform = int16_to_float32(float32_to_int16(audio_waveform))
audio_waveform = torch.from_numpy(audio_waveform).float()
temp_dict = {}
temp_dict = get_audio_features(
temp_dict, audio_waveform, 480000,
data_truncating='fusion' if self.enable_fusion else 'rand_trunc',
data_filling='repeatpad',
audio_cfg=self.model_cfg['audio_cfg'],
require_grad=audio_waveform.requires_grad
)
audio_input.append(temp_dict)
audio_embed = self.model.get_audio_embedding(audio_input)
if not use_tensor:
audio_embed = audio_embed.detach().cpu().numpy()
return audio_embed
def get_text_embedding(self, x, tokenizer = None, use_tensor = False):
"""get text embeddings from texts
Parameters
----------
x: List[str] (N,):
text list
tokenizer: func:
the tokenizer function, if not provided (None), will use the default Roberta tokenizer.
use_tensor: boolean:
if True, the output will be the tesnor, preserving the gradient (default: False).
Returns
----------
text_embed : numpy.darray | torch.Tensor (N,D):
text embeddings that extracted from texts
"""
self.model.eval()
if tokenizer is not None:
text_input = tokenizer(x)
else:
text_input = self.tokenizer(x)
text_embed = self.model.get_text_embedding(text_input)
if not use_tensor:
text_embed = text_embed.detach().cpu().numpy()
return text_embed
def get_mel(audio_data, audio_cfg):
# mel shape: (n_mels, T)
mel_tf = torchaudio.transforms.MelSpectrogram(
sample_rate=audio_cfg['sample_rate'],
n_fft=audio_cfg['window_size'],
win_length=audio_cfg['window_size'],
hop_length=audio_cfg['hop_size'],
center=True,
pad_mode="reflect",
power=2.0,
norm=None,
onesided=True,
n_mels=audio_cfg['mel_bins'],
f_min=audio_cfg['fmin'],
f_max=audio_cfg['fmax']
).to(audio_data.device)
mel = mel_tf(audio_data)
mel = torchaudio.transforms.AmplitudeToDB(top_db=None)(mel)
return mel.T # (T, n_mels)
def get_audio_features(sample, audio_data, max_len, data_truncating, data_filling, audio_cfg, require_grad=False):
"""
Calculate and add audio features to sample.
Sample: a dict containing all the data of current sample.
audio_data: a tensor of shape (T) containing audio data.
max_len: the maximum length of audio data.
data_truncating: the method of truncating data.
data_filling: the method of filling data.
audio_cfg: a dict containing audio configuration. Comes from model_cfg['audio_cfg'].
require_grad: whether to require gradient for audio data.
This is useful when we want to apply gradient-based classifier-guidance.
"""
grad_fn = suppress if require_grad else torch.no_grad
with grad_fn():
if len(audio_data) > max_len:
if data_truncating == "rand_trunc":
longer = torch.tensor([True])
elif data_truncating == "fusion":
# fusion
mel = get_mel(audio_data, audio_cfg)
# split to three parts
chunk_frames = max_len // audio_cfg['hop_size'] + 1 # the +1 related to how the spectrogram is computed
total_frames = mel.shape[0]
if chunk_frames == total_frames:
# there is a corner case where the audio length is
# larger than max_len but smaller than max_len+hop_size.
# In this case, we just use the whole audio.
mel_fusion = torch.stack([mel, mel, mel, mel], dim=0)
sample["mel_fusion"] = mel_fusion
longer = torch.tensor([False])
else:
ranges = np.array_split(list(range(0, total_frames - chunk_frames + 1)), 3)
# print('total_frames-chunk_frames:', total_frames-chunk_frames,
# 'len(audio_data):', len(audio_data),
# 'chunk_frames:', chunk_frames,
# 'total_frames:', total_frames)
if len(ranges[1]) == 0:
# if the audio is too short, we just use the first chunk
ranges[1] = [0]
if len(ranges[2]) == 0:
# if the audio is too short, we just use the first chunk
ranges[2] = [0]
# randomly choose index for each part
idx_front = np.random.choice(ranges[0])
idx_middle = np.random.choice(ranges[1])
idx_back = np.random.choice(ranges[2])
# select mel
mel_chunk_front = mel[idx_front:idx_front + chunk_frames, :]
mel_chunk_middle = mel[idx_middle:idx_middle + chunk_frames, :]
mel_chunk_back = mel[idx_back:idx_back + chunk_frames, :]
# shrink the mel
mel_shrink = torchvision.transforms.Resize(size=[chunk_frames, audio_cfg['mel_bins']])(mel[None])[0]
# logging.info(f"mel_shrink.shape: {mel_shrink.shape}")
# stack
mel_fusion = torch.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back], dim=0)
sample["mel_fusion"] = mel_fusion
longer = torch.tensor([True])
else:
raise NotImplementedError(
f"data_truncating {data_truncating} not implemented"
)
# random crop to max_len (for compatibility)
overflow = len(audio_data) - max_len
idx = np.random.randint(0, overflow + 1)
audio_data = audio_data[idx: idx + max_len]
else: # padding if too short
if len(audio_data) < max_len: # do nothing if equal
if data_filling == "repeatpad":
n_repeat = int(max_len / len(audio_data))
audio_data = audio_data.repeat(n_repeat)
# audio_data = audio_data.unsqueeze(0).unsqueeze(0).unsqueeze(0)
# audio_data = F.interpolate(audio_data,size=max_len,mode="bicubic")[0,0,0]
audio_data = F.pad(
audio_data,
(0, max_len - len(audio_data)),
mode="constant",
value=0,
)
elif data_filling == "pad":
audio_data = F.pad(
audio_data,
(0, max_len - len(audio_data)),
mode="constant",
value=0,
)
elif data_filling == "repeat":
n_repeat = int(max_len / len(audio_data))
audio_data = audio_data.repeat(n_repeat + 1)[:max_len]
else:
raise NotImplementedError(
f"data_filling {data_filling} not implemented"
)
if data_truncating == 'fusion':
mel = get_mel(audio_data, audio_cfg)
mel_fusion = torch.stack([mel, mel, mel, mel], dim=0)
sample["mel_fusion"] = mel_fusion
longer = torch.tensor([False])
sample["longer"] = longer
sample["waveform"] = audio_data
return sample |