Spaces:
Sleeping
Sleeping
File size: 10,078 Bytes
2b5b9ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
import argparse, os, sys, glob
import pathlib
directory = pathlib.Path(os.getcwd())
print(directory)
sys.path.append(str(directory))
import torch
import numpy as np
from omegaconf import OmegaConf
from PIL import Image
from tqdm import tqdm, trange
from ldm.util import instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
import pandas as pd
from torch.utils.data import DataLoader
from tqdm import tqdm
from icecream import ic
from pathlib import Path
import yaml
from vocoder.bigvgan.models import VocoderBigVGAN
import soundfile
# from pytorch_memlab import LineProfiler,profile
def load_model_from_config(config, ckpt = None, verbose=True):
model = instantiate_from_config(config.model)
if ckpt:
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
sd = pl_sd["state_dict"]
m, u = model.load_state_dict(sd, strict=False)
if len(m) > 0 and verbose:
print("missing keys:")
print(m)
if len(u) > 0 and verbose:
print("unexpected keys:")
print(u)
else:
print(f"Note chat no ckpt is loaded !!!")
model.cuda()
model.eval()
return model
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--prompt_txt",
type=str,
nargs="?",
default="prompt.txt",
help="txt file with prompts in it"
)
parser.add_argument(
"--sample_rate",
type=int,
default="22050",
help="sample rate of wav"
)
parser.add_argument(
"--inpaint",
action='store_true',
help="if test txt guided inpaint task"
)
parser.add_argument(
"--test-dataset",
default="none",
help="test which dataset: audiocaps/clotho/fsd50k"
)
parser.add_argument(
"--outdir",
type=str,
nargs="?",
help="dir to write results to",
default="outputs/txt2audio-samples"
)
parser.add_argument(
"--ddim_steps",
type=int,
default=100,
help="number of ddim sampling steps",
)
parser.add_argument(
"--plms",
action='store_true',
help="use plms sampling",
)
parser.add_argument(
"--ddim_eta",
type=float,
default=0.0,
help="ddim eta (eta=0.0 corresponds to deterministic sampling",
)
parser.add_argument(
"--n_iter",
type=int,
default=1,
help="sample this often",
)
parser.add_argument(
"--H",
type=int,
default=80,
help="image height, in pixel space",
)
parser.add_argument(
"--W",
type=int,
default=848,
help="image width, in pixel space",
)
parser.add_argument(
"--n_samples",
type=int,
default=1,
help="how many samples to produce for the given prompt",
)
parser.add_argument(
"--scale",
type=float,
default=5.0, # if it's 1, only condition is taken into consideration
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
)
parser.add_argument(
"-r",
"--resume",
type=str,
const=True,
default="",
nargs="?",
help="resume from logdir or checkpoint in logdir",
)
parser.add_argument(
"-b",
"--base",
type=str,
help="paths to base configs. Loaded from left-to-right. "
"Parameters can be overwritten or added with command-line options of the form `--key value`.",
default="",
)
parser.add_argument(
"--vocoder-ckpt",
type=str,
help="paths to vocoder checkpoint",
default='vocoder/logs/audioset',
)
return parser.parse_args()
class GenSamples:
def __init__(self,opt,sampler,model,outpath,vocoder = None,save_mel = True,save_wav = True) -> None:
self.opt = opt
self.sampler = sampler
self.model = model
self.outpath = outpath
if save_wav:
assert vocoder is not None
self.vocoder = vocoder
self.save_mel = save_mel
self.save_wav = save_wav
self.channel_dim = self.model.channels
def gen_test_sample(self,prompt,mel_name = None,wav_name = None):# prompt is {'ori_caption':’xxx‘,'struct_caption':'xxx'}
uc = None
record_dicts = []
# if os.path.exists(os.path.join(self.outpath,mel_name+f'_0.npy')):
# return record_dicts
if self.opt.scale != 1.0:
emptycap = {'ori_caption':self.opt.n_samples*[""],'struct_caption':self.opt.n_samples*[""]}
uc = self.model.get_learned_conditioning(emptycap)
for n in range(self.opt.n_iter):# trange(self.opt.n_iter, desc="Sampling"):
for k,v in prompt.items():
prompt[k] = self.opt.n_samples * [v]
c = self.model.get_learned_conditioning(prompt)# shape:[1,77,1280],即还没有变成句子embedding,仍是每个单词的embedding
if self.channel_dim>0:
shape = [self.channel_dim, self.opt.H, self.opt.W] # (z_dim, 80//2^x, 848//2^x)
else:
shape = [self.opt.H, self.opt.W]
samples_ddim, _ = self.sampler.sample(S=self.opt.ddim_steps,
conditioning=c,
batch_size=self.opt.n_samples,
shape=shape,
verbose=False,
unconditional_guidance_scale=self.opt.scale,
unconditional_conditioning=uc,
# quantize_x0=use_quantize,
eta=self.opt.ddim_eta)
x_samples_ddim = self.model.decode_first_stage(samples_ddim)
for idx,spec in enumerate(x_samples_ddim):
spec = spec.squeeze(0).cpu().numpy()
record_dict = {'caption':prompt['ori_caption'][0]}
if self.save_mel:
mel_path = os.path.join(self.outpath,mel_name+f'_{idx}.npy')
np.save(mel_path,spec)
record_dict['mel_path'] = mel_path
if self.save_wav:
wav = self.vocoder.vocode(spec)
wav_path = os.path.join(self.outpath,wav_name+f'_{idx}.wav')
soundfile.write(wav_path, wav, self.opt.sample_rate)
record_dict['audio_path'] = wav_path
record_dicts.append(record_dict)
return record_dicts
def main():
opt = parse_args()
config = OmegaConf.load(opt.base)
# print("-------quick debug no load ckpt---------")
# model = instantiate_from_config(config['model'])# for quick debug
model = load_model_from_config(config, opt.resume)
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = model.to(device)
if opt.plms:
sampler = PLMSSampler(model)
else:
sampler = DDIMSampler(model)
os.makedirs(opt.outdir, exist_ok=True)
if 'mel' in opt.vocoder_ckpt:
vocoder = VocoderMelGan(opt.vocoder_ckpt,device)
elif 'hifi' in opt.vocoder_ckpt:
vocoder = VocoderHifigan(opt.vocoder_ckpt,device)
elif 'bigv' in opt.vocoder_ckpt:
vocoder = VocoderBigVGAN(opt.vocoder_ckpt,device)
generator = GenSamples(opt,sampler,model,opt.outdir,vocoder,save_mel = False,save_wav = True)
csv_dicts = []
with torch.no_grad():
with model.ema_scope():
if opt.test_dataset != 'none':
if opt.test_dataset == 'audiocaps':
test_dataset = instantiate_from_config(config['test_dataset'])
elif opt.test_dataset == 'clotho':
test_dataset = instantiate_from_config(config['test_dataset2'])
elif opt.test_dataset == 'fsd50k':
test_dataset = instantiate_from_config(config['test_dataset3'])
elif opt.test_dataset == 'musiccap':
test_dataset = instantiate_from_config(config['test_dataset'])
print(f"Dataset: {type(test_dataset)} LEN: {len(test_dataset)}")
for item in tqdm(test_dataset):
import ipdb
# ipdb.set_trace()
prompt,f_name = item['caption'],item['f_name']
vname_num_split_index = f_name.rfind('_')# file_names[b]:video_name+'_'+num
v_n,num = f_name[:vname_num_split_index],f_name[vname_num_split_index+1:]
mel_name = f'{v_n}_sample_{num}'
wav_name = f'{v_n}_sample_{num}'
# write_gt_wav(v_n,opt.test_dataset2,opt.outdir,opt.sample_rate)
csv_dicts.extend(generator.gen_test_sample(prompt,mel_name=mel_name,wav_name=wav_name))
df = pd.DataFrame.from_dict(csv_dicts)
df.to_csv(os.path.join(opt.outdir,'result.csv'),sep='\t',index=False)
else:
with open(opt.prompt_txt,'r') as f:
prompts = f.readlines()
for prompt in prompts:
wav_name = f'{prompt.strip().replace(" ", "-")}'
generator.gen_test_sample(prompt,wav_name=wav_name)
print(f"Your samples are ready and waiting four you here: \n{opt.outdir} \nEnjoy.")
if __name__ == "__main__":
main()
|