File size: 12,354 Bytes
87e21d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
#!/usr/bin/env python
from __future__ import annotations

import argparse
import os
from contextlib import nullcontext

import torch
from accelerate import init_empty_weights
from diffusers import (
    DCAE,
    DCAE_HF,
    FlowDPMSolverMultistepScheduler,
    FlowMatchEulerDiscreteScheduler,
    SanaPipeline,
    SanaTransformer2DModel,
)
from diffusers.models.modeling_utils import load_model_dict_into_meta
from diffusers.utils.import_utils import is_accelerate_available
from termcolor import colored
from transformers import AutoModelForCausalLM, AutoTokenizer

CTX = init_empty_weights if is_accelerate_available else nullcontext

ckpt_id = "Sana"
# https://github.com/NVlabs/Sana/blob/main/scripts/inference.py


def main(args):
    all_state_dict = torch.load(args.orig_ckpt_path, map_location=torch.device("cpu"))
    state_dict = all_state_dict.pop("state_dict")
    converted_state_dict = {}

    # Patch embeddings.
    converted_state_dict["pos_embed.proj.weight"] = state_dict.pop("x_embedder.proj.weight")
    converted_state_dict["pos_embed.proj.bias"] = state_dict.pop("x_embedder.proj.bias")

    # Caption projection.
    converted_state_dict["caption_projection.linear_1.weight"] = state_dict.pop("y_embedder.y_proj.fc1.weight")
    converted_state_dict["caption_projection.linear_1.bias"] = state_dict.pop("y_embedder.y_proj.fc1.bias")
    converted_state_dict["caption_projection.linear_2.weight"] = state_dict.pop("y_embedder.y_proj.fc2.weight")
    converted_state_dict["caption_projection.linear_2.bias"] = state_dict.pop("y_embedder.y_proj.fc2.bias")

    # AdaLN-single LN
    converted_state_dict["adaln_single.emb.timestep_embedder.linear_1.weight"] = state_dict.pop(
        "t_embedder.mlp.0.weight"
    )
    converted_state_dict["adaln_single.emb.timestep_embedder.linear_1.bias"] = state_dict.pop("t_embedder.mlp.0.bias")
    converted_state_dict["adaln_single.emb.timestep_embedder.linear_2.weight"] = state_dict.pop(
        "t_embedder.mlp.2.weight"
    )
    converted_state_dict["adaln_single.emb.timestep_embedder.linear_2.bias"] = state_dict.pop("t_embedder.mlp.2.bias")

    # Shared norm.
    converted_state_dict["adaln_single.linear.weight"] = state_dict.pop("t_block.1.weight")
    converted_state_dict["adaln_single.linear.bias"] = state_dict.pop("t_block.1.bias")

    # y norm
    converted_state_dict["caption_norm.weight"] = state_dict.pop("attention_y_norm.weight")

    if args.model_type == "SanaMS_1600M_P1_D20":
        layer_num = 20
        flow_shift = 3.0
    elif args.model_type == "SanaMS_600M_P1_D28":
        layer_num = 28
        flow_shift = 4.0
    else:
        raise ValueError(f"{args.model_type} is not supported.")

    for depth in range(layer_num):
        # Transformer blocks.
        converted_state_dict[f"transformer_blocks.{depth}.scale_shift_table"] = state_dict.pop(
            f"blocks.{depth}.scale_shift_table"
        )
        # Linear Attention is all you need 🤘

        # Self attention.
        q, k, v = torch.chunk(state_dict.pop(f"blocks.{depth}.attn.qkv.weight"), 3, dim=0)
        converted_state_dict[f"transformer_blocks.{depth}.attn1.to_q.weight"] = q
        converted_state_dict[f"transformer_blocks.{depth}.attn1.to_k.weight"] = k
        converted_state_dict[f"transformer_blocks.{depth}.attn1.to_v.weight"] = v
        # Projection.
        converted_state_dict[f"transformer_blocks.{depth}.attn1.to_out.0.weight"] = state_dict.pop(
            f"blocks.{depth}.attn.proj.weight"
        )
        converted_state_dict[f"transformer_blocks.{depth}.attn1.to_out.0.bias"] = state_dict.pop(
            f"blocks.{depth}.attn.proj.bias"
        )

        # Feed-forward.
        converted_state_dict[f"transformer_blocks.{depth}.ff.inverted_conv.conv.weight"] = state_dict.pop(
            f"blocks.{depth}.mlp.inverted_conv.conv.weight"
        )
        converted_state_dict[f"transformer_blocks.{depth}.ff.inverted_conv.conv.bias"] = state_dict.pop(
            f"blocks.{depth}.mlp.inverted_conv.conv.bias"
        )
        converted_state_dict[f"transformer_blocks.{depth}.ff.depth_conv.conv.weight"] = state_dict.pop(
            f"blocks.{depth}.mlp.depth_conv.conv.weight"
        )
        converted_state_dict[f"transformer_blocks.{depth}.ff.depth_conv.conv.bias"] = state_dict.pop(
            f"blocks.{depth}.mlp.depth_conv.conv.bias"
        )
        converted_state_dict[f"transformer_blocks.{depth}.ff.point_conv.conv.weight"] = state_dict.pop(
            f"blocks.{depth}.mlp.point_conv.conv.weight"
        )

        # Cross-attention.
        q = state_dict.pop(f"blocks.{depth}.cross_attn.q_linear.weight")
        q_bias = state_dict.pop(f"blocks.{depth}.cross_attn.q_linear.bias")
        k, v = torch.chunk(state_dict.pop(f"blocks.{depth}.cross_attn.kv_linear.weight"), 2, dim=0)
        k_bias, v_bias = torch.chunk(state_dict.pop(f"blocks.{depth}.cross_attn.kv_linear.bias"), 2, dim=0)

        converted_state_dict[f"transformer_blocks.{depth}.attn2.to_q.weight"] = q
        converted_state_dict[f"transformer_blocks.{depth}.attn2.to_q.bias"] = q_bias
        converted_state_dict[f"transformer_blocks.{depth}.attn2.to_k.weight"] = k
        converted_state_dict[f"transformer_blocks.{depth}.attn2.to_k.bias"] = k_bias
        converted_state_dict[f"transformer_blocks.{depth}.attn2.to_v.weight"] = v
        converted_state_dict[f"transformer_blocks.{depth}.attn2.to_v.bias"] = v_bias

        converted_state_dict[f"transformer_blocks.{depth}.attn2.to_out.0.weight"] = state_dict.pop(
            f"blocks.{depth}.cross_attn.proj.weight"
        )
        converted_state_dict[f"transformer_blocks.{depth}.attn2.to_out.0.bias"] = state_dict.pop(
            f"blocks.{depth}.cross_attn.proj.bias"
        )

    # Final block.
    converted_state_dict["proj_out.weight"] = state_dict.pop("final_layer.linear.weight")
    converted_state_dict["proj_out.bias"] = state_dict.pop("final_layer.linear.bias")
    converted_state_dict["scale_shift_table"] = state_dict.pop("final_layer.scale_shift_table")

    # Transformer
    with CTX():
        transformer = SanaTransformer2DModel(
            num_attention_heads=model_kwargs[args.model_type]["num_attention_heads"],
            attention_head_dim=model_kwargs[args.model_type]["attention_head_dim"],
            num_cross_attention_heads=model_kwargs[args.model_type]["num_cross_attention_heads"],
            cross_attention_head_dim=model_kwargs[args.model_type]["cross_attention_head_dim"],
            in_channels=32,
            out_channels=32,
            num_layers=model_kwargs[args.model_type]["num_layers"],
            cross_attention_dim=model_kwargs[args.model_type]["cross_attention_dim"],
            attention_bias=False,
            sample_size=32,
            patch_size=1,
            activation_fn=("silu", "silu", None),
            upcast_attention=False,
            norm_type="ada_norm_single",
            norm_elementwise_affine=False,
            norm_eps=1e-6,
            use_additional_conditions=False,
            caption_channels=2304,
            use_caption_norm=True,
            caption_norm_scale_factor=0.1,
            attention_type="default",
            use_pe=False,
            expand_ratio=2.5,
            ff_bias=(True, True, False),
            ff_norm=(None, None, None),
        )
    if is_accelerate_available():
        load_model_dict_into_meta(transformer, converted_state_dict)
    else:
        transformer.load_state_dict(converted_state_dict, strict=True)

    try:
        state_dict.pop("y_embedder.y_embedding")
        state_dict.pop("pos_embed")
    except:
        pass
    assert len(state_dict) == 0, f"State dict is not empty, {state_dict.keys()}"

    num_model_params = sum(p.numel() for p in transformer.parameters())
    print(f"Total number of transformer parameters: {num_model_params}")

    if not args.save_full_pipeline:
        print(
            colored(
                f"Only saving transformer model of {args.model_type}. "
                f"Set --save_full_pipeline to save the whole SanaPipeline",
                "green",
                attrs=["bold"],
            )
        )
        transformer.to(weight_dtype).save_pretrained(os.path.join(args.dump_path, "transformer"))
    else:
        print(colored(f"Saving the whole SanaPipeline containing {args.model_type}", "green", attrs=["bold"]))
        # VAE
        dc_ae = DCAE_HF.from_pretrained(f"mit-han-lab/dc-ae-f32c32-sana-1.0")
        dc_ae_state_dict = dc_ae.state_dict()
        dc_ae = DCAE(
            in_channels=3,
            latent_channels=32,
            encoder_width_list=[128, 256, 512, 512, 1024, 1024],
            encoder_depth_list=[2, 2, 2, 3, 3, 3],
            encoder_block_type=["ResBlock", "ResBlock", "ResBlock", "EViTS5_GLU", "EViTS5_GLU", "EViTS5_GLU"],
            encoder_norm="rms2d",
            encoder_act="silu",
            downsample_block_type="Conv",
            decoder_width_list=[128, 256, 512, 512, 1024, 1024],
            decoder_depth_list=[3, 3, 3, 3, 3, 3],
            decoder_block_type=["ResBlock", "ResBlock", "ResBlock", "EViTS5_GLU", "EViTS5_GLU", "EViTS5_GLU"],
            decoder_norm="rms2d",
            decoder_act="silu",
            upsample_block_type="InterpolateConv",
            scaling_factor=0.41407,
        )
        dc_ae.load_state_dict(dc_ae_state_dict, strict=True)
        dc_ae.to(torch.float32).to(device)

        # Text Encoder
        text_encoder_model_path = "google/gemma-2-2b-it"
        tokenizer = AutoTokenizer.from_pretrained(text_encoder_model_path)
        tokenizer.padding_side = "right"
        text_encoder = (
            AutoModelForCausalLM.from_pretrained(text_encoder_model_path, torch_dtype=torch.bfloat16)
            .get_decoder()
            .to(device)
        )

        # Scheduler
        if args.scheduler_type == "flow-dpm_solver":
            scheduler = FlowDPMSolverMultistepScheduler(flow_shift=flow_shift)
        elif args.scheduler_type == "flow-euler":
            scheduler = FlowMatchEulerDiscreteScheduler(shift=flow_shift)
        else:
            raise ValueError(f"Scheduler type {args.scheduler_type} is not supported")

        # transformer
        transformer.to(device).to(weight_dtype)

        pipe = SanaPipeline(
            tokenizer=tokenizer,
            text_encoder=text_encoder,
            transformer=transformer,
            vae=dc_ae,
            scheduler=scheduler,
        )

        image = pipe(
            "a dog",
            height=1024,
            width=1024,
            guidance_scale=5.0,
        )[0]

        image[0].save("sana.png")

        pipe.save_pretrained(args.dump_path)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--orig_ckpt_path", default=None, type=str, required=False, help="Path to the checkpoint to convert."
    )
    parser.add_argument(
        "--image_size",
        default=1024,
        type=int,
        choices=[512, 1024],
        required=False,
        help="Image size of pretrained model, 512 or 1024.",
    )
    parser.add_argument(
        "--model_type", default="SanaMS_1600M_P1_D20", type=str, choices=["SanaMS_1600M_P1_D20", "SanaMS_600M_P1_D28"]
    )
    parser.add_argument(
        "--scheduler_type", default="flow-dpm_solver", type=str, choices=["flow-dpm_solver", "flow-euler"]
    )
    parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output pipeline.")
    parser.add_argument("--save_full_pipeline", action="store_true", help="save all the pipelien elemets in one.")

    args = parser.parse_args()

    model_kwargs = {
        "SanaMS_1600M_P1_D20": {
            "num_attention_heads": 70,
            "attention_head_dim": 32,
            "num_cross_attention_heads": 20,
            "cross_attention_head_dim": 112,
            "cross_attention_dim": 2240,
            "num_layers": 20,
        },
        "SanaMS_600M_P1_D28": {
            "num_attention_heads": 36,
            "attention_head_dim": 32,
            "num_cross_attention_heads": 16,
            "cross_attention_head_dim": 72,
            "cross_attention_dim": 1152,
            "num_layers": 28,
        },
    }

    device = "cuda" if torch.cuda.is_available() else "cpu"
    weight_dtype = torch.float16

    main(args)