File size: 9,119 Bytes
87e21d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0

# Modified from OpenAI's diffusion repos
#     GLIDE: https://github.com/openai/glide-text2im/blob/main/glide_text2im/gaussian_diffusion.py
#     ADM:   https://github.com/openai/guided-diffusion/blob/main/guided_diffusion
#     IDDPM: https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py

import random

import numpy as np
from tqdm import tqdm

from diffusion.model.utils import *

# ----------------------------------------------------------------------------
# Proposed EDM sampler (Algorithm 2).


def edm_sampler(
    net,
    latents,
    class_labels=None,
    cfg_scale=None,
    randn_like=torch.randn_like,
    num_steps=18,
    sigma_min=0.002,
    sigma_max=80,
    rho=7,
    S_churn=0,
    S_min=0,
    S_max=float("inf"),
    S_noise=1,
    **kwargs
):
    # Adjust noise levels based on what's supported by the network.
    sigma_min = max(sigma_min, net.sigma_min)
    sigma_max = min(sigma_max, net.sigma_max)

    # Time step discretization.
    step_indices = torch.arange(num_steps, dtype=torch.float64, device=latents.device)
    t_steps = (
        sigma_max ** (1 / rho) + step_indices / (num_steps - 1) * (sigma_min ** (1 / rho) - sigma_max ** (1 / rho))
    ) ** rho
    t_steps = torch.cat([net.round_sigma(t_steps), torch.zeros_like(t_steps[:1])])  # t_N = 0

    # Main sampling loop.
    x_next = latents.to(torch.float64) * t_steps[0]
    for i, (t_cur, t_next) in tqdm(list(enumerate(zip(t_steps[:-1], t_steps[1:])))):  # 0, ..., N-1
        x_cur = x_next

        # Increase noise temporarily.
        gamma = min(S_churn / num_steps, np.sqrt(2) - 1) if S_min <= t_cur <= S_max else 0
        t_hat = net.round_sigma(t_cur + gamma * t_cur)
        x_hat = x_cur + (t_hat**2 - t_cur**2).sqrt() * S_noise * randn_like(x_cur)

        # Euler step.
        denoised = net(x_hat.float(), t_hat, class_labels, cfg_scale, **kwargs)["x"].to(torch.float64)
        d_cur = (x_hat - denoised) / t_hat
        x_next = x_hat + (t_next - t_hat) * d_cur

        # Apply 2nd order correction.
        if i < num_steps - 1:
            denoised = net(x_next.float(), t_next, class_labels, cfg_scale, **kwargs)["x"].to(torch.float64)
            d_prime = (x_next - denoised) / t_next
            x_next = x_hat + (t_next - t_hat) * (0.5 * d_cur + 0.5 * d_prime)

    return x_next


# ----------------------------------------------------------------------------
# Generalized ablation sampler, representing the superset of all sampling
# methods discussed in the paper.


def ablation_sampler(
    net,
    latents,
    class_labels=None,
    cfg_scale=None,
    feat=None,
    randn_like=torch.randn_like,
    num_steps=18,
    sigma_min=None,
    sigma_max=None,
    rho=7,
    solver="heun",
    discretization="edm",
    schedule="linear",
    scaling="none",
    epsilon_s=1e-3,
    C_1=0.001,
    C_2=0.008,
    M=1000,
    alpha=1,
    S_churn=0,
    S_min=0,
    S_max=float("inf"),
    S_noise=1,
):
    assert solver in ["euler", "heun"]
    assert discretization in ["vp", "ve", "iddpm", "edm"]
    assert schedule in ["vp", "ve", "linear"]
    assert scaling in ["vp", "none"]

    # Helper functions for VP & VE noise level schedules.
    vp_sigma = lambda beta_d, beta_min: lambda t: (np.e ** (0.5 * beta_d * (t**2) + beta_min * t) - 1) ** 0.5
    vp_sigma_deriv = lambda beta_d, beta_min: lambda t: 0.5 * (beta_min + beta_d * t) * (sigma(t) + 1 / sigma(t))
    vp_sigma_inv = (
        lambda beta_d, beta_min: lambda sigma: ((beta_min**2 + 2 * beta_d * (sigma**2 + 1).log()).sqrt() - beta_min)
        / beta_d
    )
    ve_sigma = lambda t: t.sqrt()
    ve_sigma_deriv = lambda t: 0.5 / t.sqrt()
    ve_sigma_inv = lambda sigma: sigma**2

    # Select default noise level range based on the specified time step discretization.
    if sigma_min is None:
        vp_def = vp_sigma(beta_d=19.1, beta_min=0.1)(t=epsilon_s)
        sigma_min = {"vp": vp_def, "ve": 0.02, "iddpm": 0.002, "edm": 0.002}[discretization]
    if sigma_max is None:
        vp_def = vp_sigma(beta_d=19.1, beta_min=0.1)(t=1)
        sigma_max = {"vp": vp_def, "ve": 100, "iddpm": 81, "edm": 80}[discretization]

    # Adjust noise levels based on what's supported by the network.
    sigma_min = max(sigma_min, net.sigma_min)
    sigma_max = min(sigma_max, net.sigma_max)

    # Compute corresponding betas for VP.
    vp_beta_d = 2 * (np.log(sigma_min**2 + 1) / epsilon_s - np.log(sigma_max**2 + 1)) / (epsilon_s - 1)
    vp_beta_min = np.log(sigma_max**2 + 1) - 0.5 * vp_beta_d

    # Define time steps in terms of noise level.
    step_indices = torch.arange(num_steps, dtype=torch.float64, device=latents.device)
    if discretization == "vp":
        orig_t_steps = 1 + step_indices / (num_steps - 1) * (epsilon_s - 1)
        sigma_steps = vp_sigma(vp_beta_d, vp_beta_min)(orig_t_steps)
    elif discretization == "ve":
        orig_t_steps = (sigma_max**2) * ((sigma_min**2 / sigma_max**2) ** (step_indices / (num_steps - 1)))
        sigma_steps = ve_sigma(orig_t_steps)
    elif discretization == "iddpm":
        u = torch.zeros(M + 1, dtype=torch.float64, device=latents.device)
        alpha_bar = lambda j: (0.5 * np.pi * j / M / (C_2 + 1)).sin() ** 2
        for j in torch.arange(M, 0, -1, device=latents.device):  # M, ..., 1
            u[j - 1] = ((u[j] ** 2 + 1) / (alpha_bar(j - 1) / alpha_bar(j)).clip(min=C_1) - 1).sqrt()
        u_filtered = u[torch.logical_and(u >= sigma_min, u <= sigma_max)]
        sigma_steps = u_filtered[((len(u_filtered) - 1) / (num_steps - 1) * step_indices).round().to(torch.int64)]
    else:
        assert discretization == "edm"
        sigma_steps = (
            sigma_max ** (1 / rho) + step_indices / (num_steps - 1) * (sigma_min ** (1 / rho) - sigma_max ** (1 / rho))
        ) ** rho

    # Define noise level schedule.
    if schedule == "vp":
        sigma = vp_sigma(vp_beta_d, vp_beta_min)
        sigma_deriv = vp_sigma_deriv(vp_beta_d, vp_beta_min)
        sigma_inv = vp_sigma_inv(vp_beta_d, vp_beta_min)
    elif schedule == "ve":
        sigma = ve_sigma
        sigma_deriv = ve_sigma_deriv
        sigma_inv = ve_sigma_inv
    else:
        assert schedule == "linear"
        sigma = lambda t: t
        sigma_deriv = lambda t: 1
        sigma_inv = lambda sigma: sigma

    # Define scaling schedule.
    if scaling == "vp":
        s = lambda t: 1 / (1 + sigma(t) ** 2).sqrt()
        s_deriv = lambda t: -sigma(t) * sigma_deriv(t) * (s(t) ** 3)
    else:
        assert scaling == "none"
        s = lambda t: 1
        s_deriv = lambda t: 0

    # Compute final time steps based on the corresponding noise levels.
    t_steps = sigma_inv(net.round_sigma(sigma_steps))
    t_steps = torch.cat([t_steps, torch.zeros_like(t_steps[:1])])  # t_N = 0

    # Main sampling loop.
    t_next = t_steps[0]
    x_next = latents.to(torch.float64) * (sigma(t_next) * s(t_next))
    for i, (t_cur, t_next) in enumerate(zip(t_steps[:-1], t_steps[1:])):  # 0, ..., N-1
        x_cur = x_next

        # Increase noise temporarily.
        gamma = min(S_churn / num_steps, np.sqrt(2) - 1) if S_min <= sigma(t_cur) <= S_max else 0
        t_hat = sigma_inv(net.round_sigma(sigma(t_cur) + gamma * sigma(t_cur)))
        x_hat = s(t_hat) / s(t_cur) * x_cur + (sigma(t_hat) ** 2 - sigma(t_cur) ** 2).clip(min=0).sqrt() * s(
            t_hat
        ) * S_noise * randn_like(x_cur)

        # Euler step.
        h = t_next - t_hat
        denoised = net(x_hat.float() / s(t_hat), sigma(t_hat), class_labels, cfg_scale, feat=feat)["x"].to(
            torch.float64
        )
        d_cur = (sigma_deriv(t_hat) / sigma(t_hat) + s_deriv(t_hat) / s(t_hat)) * x_hat - sigma_deriv(t_hat) * s(
            t_hat
        ) / sigma(t_hat) * denoised
        x_prime = x_hat + alpha * h * d_cur
        t_prime = t_hat + alpha * h

        # Apply 2nd order correction.
        if solver == "euler" or i == num_steps - 1:
            x_next = x_hat + h * d_cur
        else:
            assert solver == "heun"
            denoised = net(x_prime.float() / s(t_prime), sigma(t_prime), class_labels, cfg_scale, feat=feat)["x"].to(
                torch.float64
            )
            d_prime = (sigma_deriv(t_prime) / sigma(t_prime) + s_deriv(t_prime) / s(t_prime)) * x_prime - sigma_deriv(
                t_prime
            ) * s(t_prime) / sigma(t_prime) * denoised
            x_next = x_hat + h * ((1 - 1 / (2 * alpha)) * d_cur + 1 / (2 * alpha) * d_prime)

    return x_next