Spaces:
Runtime error
Runtime error
File size: 10,274 Bytes
d3bdeec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
from diffusers import StableDiffusionPipeline
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import numpy as np
from typing import Any, Callable, Dict, List, Optional, Union
from diffusers.models.unet_2d_condition import UNet2DConditionModel
from diffusers import DDIMScheduler
import gc
from PIL import Image
class MyUNet2DConditionModel(UNet2DConditionModel):
def forward(
self,
sample: torch.FloatTensor,
timestep: Union[torch.Tensor, float, int],
up_ft_indices,
encoder_hidden_states: torch.Tensor,
class_labels: Optional[torch.Tensor] = None,
timestep_cond: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
output_eps=False):
r"""
Args:
sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttnProcessor` as defined under
`self.processor` in
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
"""
# By default samples have to be AT least a multiple of the overall upsampling factor.
# The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
# However, the upsampling interpolation output size can be forced to fit any upsampling size
# on the fly if necessary.
default_overall_up_factor = 2**self.num_upsamplers
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
forward_upsample_size = False
upsample_size = None
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
# logger.info("Forward upsample size to force interpolation output size.")
forward_upsample_size = True
# prepare attention_mask
if attention_mask is not None:
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
attention_mask = attention_mask.unsqueeze(1)
# 0. center input if necessary
if self.config.center_input_sample:
sample = 2 * sample - 1.0
# 1. time
timesteps = timestep
if not torch.is_tensor(timesteps):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
# This would be a good case for the `match` statement (Python 3.10+)
is_mps = sample.device.type == "mps"
if isinstance(timestep, float):
dtype = torch.float32 if is_mps else torch.float64
else:
dtype = torch.int32 if is_mps else torch.int64
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
elif len(timesteps.shape) == 0:
timesteps = timesteps[None].to(sample.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timesteps = timesteps.expand(sample.shape[0])
t_emb = self.time_proj(timesteps)
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might actually be running in fp16. so we need to cast here.
# there might be better ways to encapsulate this.
t_emb = t_emb.to(dtype=self.dtype)
emb = self.time_embedding(t_emb, timestep_cond)
if self.class_embedding is not None:
if class_labels is None:
raise ValueError("class_labels should be provided when num_class_embeds > 0")
if self.config.class_embed_type == "timestep":
class_labels = self.time_proj(class_labels)
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
emb = emb + class_emb
# 2. pre-process
sample = self.conv_in(sample)
# 3. down
down_block_res_samples = (sample,)
for downsample_block in self.down_blocks:
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
sample, res_samples = downsample_block(
hidden_states=sample,
temb=emb,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
cross_attention_kwargs=cross_attention_kwargs,
)
else:
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
down_block_res_samples += res_samples
# 4. mid
if self.mid_block is not None:
sample = self.mid_block(
sample,
emb,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
cross_attention_kwargs=cross_attention_kwargs,
)
# 5. up
up_ft = {}
for i, upsample_block in enumerate(self.up_blocks):
if i > np.max(up_ft_indices):
break
is_final_block = i == len(self.up_blocks) - 1
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
# if we have not reached the final block and need to forward the
# upsample size, we do it here
if not is_final_block and forward_upsample_size:
upsample_size = down_block_res_samples[-1].shape[2:]
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
sample = upsample_block(
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=res_samples,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
upsample_size=upsample_size,
attention_mask=attention_mask,
)
else:
sample = upsample_block(
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
)
if i in up_ft_indices:
up_ft[i] = sample
output = {}
output['up_ft'] = up_ft
if output_eps:
sample = self.conv_norm_out(sample)
sample = self.conv_act(sample)
sample = self.conv_out(sample)
output['eps'] = sample
return output
class OneStepSDPipeline(StableDiffusionPipeline):
# @torch.no_grad()
def __call__(
self,
t,
up_ft_indices,
negative_prompt: Optional[Union[str, List[str]]] = None,
img_tensor=None,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
latents=None
):
device = self._execution_device
if latents is None:
latents = self.vae.encode(img_tensor).latent_dist.sample() * self.vae.config.scaling_factor
t = torch.tensor(t.clone().detach(), dtype=torch.long, device=device)
noise = torch.randn_like(latents).to(device)
latents_noisy = self.scheduler.add_noise(latents, noise, t)
unet_output = self.unet(latents_noisy,
t,
up_ft_indices,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs)
return unet_output
class SDFeaturizer:
def __init__(self, sd_id='ckpt/stable-diffusion-2-1-base'):
unet = MyUNet2DConditionModel.from_pretrained(sd_id, subfolder="unet")
onestep_pipe = OneStepSDPipeline.from_pretrained(sd_id, unet=unet, safety_checker=None)
onestep_pipe.vae.decoder = None
onestep_pipe.scheduler = DDIMScheduler.from_pretrained(sd_id, subfolder="scheduler")
gc.collect()
onestep_pipe = onestep_pipe.to("cuda")
onestep_pipe.enable_attention_slicing()
onestep_pipe.enable_xformers_memory_efficient_attention()
self.pipe = onestep_pipe
@torch.no_grad()
def forward(self,
img_tensor,
prompt,
t=261,
up_ft_index=1,
ensemble_size=8):
'''
Args:
img_tensor: should be a single torch tensor in the shape of [1, C, H, W] or [C, H, W]
prompt: the prompt to use, a string
t: the time step to use, should be an int in the range of [0, 1000]
up_ft_index: which upsampling block of the U-Net to extract feature, you can choose [0, 1, 2, 3]
ensemble_size: the number of repeated images used in the batch to extract features
Return:
unet_ft: a torch tensor in the shape of [1, c, h, w]
'''
img_tensor = img_tensor.repeat(ensemble_size, 1, 1, 1).cuda() # ensem, c, h, w
prompt_embeds = self.pipe._encode_prompt(
prompt=prompt,
device='cuda',
num_images_per_prompt=1,
do_classifier_free_guidance=False) # [1, 77, dim]
prompt_embeds = prompt_embeds.repeat(ensemble_size, 1, 1)
unet_ft_all = self.pipe(
img_tensor=img_tensor,
t=t,
up_ft_indices=[up_ft_index],
prompt_embeds=prompt_embeds)
unet_ft = unet_ft_all['up_ft'][up_ft_index] # ensem, c, h, w
unet_ft = unet_ft.mean(0, keepdim=True) # 1,c,h,w
return unet_ft
|