File size: 10,274 Bytes
d3bdeec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
from diffusers import StableDiffusionPipeline
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import numpy as np
from typing import Any, Callable, Dict, List, Optional, Union
from diffusers.models.unet_2d_condition import UNet2DConditionModel
from diffusers import DDIMScheduler
import gc
from PIL import Image

class MyUNet2DConditionModel(UNet2DConditionModel):
    def forward(
        self,
        sample: torch.FloatTensor,
        timestep: Union[torch.Tensor, float, int],
        up_ft_indices,
        encoder_hidden_states: torch.Tensor,
        class_labels: Optional[torch.Tensor] = None,
        timestep_cond: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        output_eps=False):
        r"""
        Args:
            sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
            timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
            encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttnProcessor` as defined under
                `self.processor` in
                [diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
        """
        # By default samples have to be AT least a multiple of the overall upsampling factor.
        # The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
        # However, the upsampling interpolation output size can be forced to fit any upsampling size
        # on the fly if necessary.
        default_overall_up_factor = 2**self.num_upsamplers

        # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
        forward_upsample_size = False
        upsample_size = None

        if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
            # logger.info("Forward upsample size to force interpolation output size.")
            forward_upsample_size = True

        # prepare attention_mask
        if attention_mask is not None:
            attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
            attention_mask = attention_mask.unsqueeze(1)

        # 0. center input if necessary
        if self.config.center_input_sample:
            sample = 2 * sample - 1.0

        # 1. time
        timesteps = timestep
        if not torch.is_tensor(timesteps):
            # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
            # This would be a good case for the `match` statement (Python 3.10+)
            is_mps = sample.device.type == "mps"
            if isinstance(timestep, float):
                dtype = torch.float32 if is_mps else torch.float64
            else:
                dtype = torch.int32 if is_mps else torch.int64
            timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
        elif len(timesteps.shape) == 0:
            timesteps = timesteps[None].to(sample.device)

        # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
        timesteps = timesteps.expand(sample.shape[0])

        t_emb = self.time_proj(timesteps)

        # timesteps does not contain any weights and will always return f32 tensors
        # but time_embedding might actually be running in fp16. so we need to cast here.
        # there might be better ways to encapsulate this.
        t_emb = t_emb.to(dtype=self.dtype)

        emb = self.time_embedding(t_emb, timestep_cond)

        if self.class_embedding is not None:
            if class_labels is None:
                raise ValueError("class_labels should be provided when num_class_embeds > 0")

            if self.config.class_embed_type == "timestep":
                class_labels = self.time_proj(class_labels)

            class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
            emb = emb + class_emb

        # 2. pre-process
        sample = self.conv_in(sample)

        # 3. down
        down_block_res_samples = (sample,)
        for downsample_block in self.down_blocks:
            if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
                sample, res_samples = downsample_block(
                    hidden_states=sample,
                    temb=emb,
                    encoder_hidden_states=encoder_hidden_states,
                    attention_mask=attention_mask,
                    cross_attention_kwargs=cross_attention_kwargs,
                )
            else:
                sample, res_samples = downsample_block(hidden_states=sample, temb=emb)

            down_block_res_samples += res_samples

        # 4. mid
        if self.mid_block is not None:
            sample = self.mid_block(
                sample,
                emb,
                encoder_hidden_states=encoder_hidden_states,
                attention_mask=attention_mask,
                cross_attention_kwargs=cross_attention_kwargs,
            )

        # 5. up
        up_ft = {}
        for i, upsample_block in enumerate(self.up_blocks):

            if i > np.max(up_ft_indices):
                break

            is_final_block = i == len(self.up_blocks) - 1

            res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
            down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]

            # if we have not reached the final block and need to forward the
            # upsample size, we do it here
            if not is_final_block and forward_upsample_size:
                upsample_size = down_block_res_samples[-1].shape[2:]

            if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
                sample = upsample_block(
                    hidden_states=sample,
                    temb=emb,
                    res_hidden_states_tuple=res_samples,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    upsample_size=upsample_size,
                    attention_mask=attention_mask,
                )
            else:
                sample = upsample_block(
                    hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
                )

            if i in up_ft_indices:
                up_ft[i] = sample

        output = {}
        output['up_ft'] = up_ft
        if output_eps:
            sample = self.conv_norm_out(sample)
            sample = self.conv_act(sample)
            sample = self.conv_out(sample)
            output['eps'] = sample
        return output

class OneStepSDPipeline(StableDiffusionPipeline):
    # @torch.no_grad()
    def __call__(
        self,

        t,
        up_ft_indices,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        img_tensor=None,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
        callback_steps: int = 1,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        latents=None
    ):

        device = self._execution_device
        if latents is None:
            latents = self.vae.encode(img_tensor).latent_dist.sample() * self.vae.config.scaling_factor
        t = torch.tensor(t.clone().detach(), dtype=torch.long, device=device)
        noise = torch.randn_like(latents).to(device)
        latents_noisy = self.scheduler.add_noise(latents, noise, t)
        unet_output = self.unet(latents_noisy, 
                               t,
                               up_ft_indices,
                               encoder_hidden_states=prompt_embeds,
                               cross_attention_kwargs=cross_attention_kwargs)
        return unet_output


class SDFeaturizer:
    def __init__(self, sd_id='ckpt/stable-diffusion-2-1-base'):
        unet = MyUNet2DConditionModel.from_pretrained(sd_id, subfolder="unet")
        onestep_pipe = OneStepSDPipeline.from_pretrained(sd_id, unet=unet, safety_checker=None)
        onestep_pipe.vae.decoder = None
        onestep_pipe.scheduler = DDIMScheduler.from_pretrained(sd_id, subfolder="scheduler")
        gc.collect()
        onestep_pipe = onestep_pipe.to("cuda")
        onestep_pipe.enable_attention_slicing()
        onestep_pipe.enable_xformers_memory_efficient_attention()
        self.pipe = onestep_pipe

    @torch.no_grad()
    def forward(self, 
                img_tensor,
                prompt, 
                t=261, 
                up_ft_index=1, 
                ensemble_size=8):
        '''
        Args:
            img_tensor: should be a single torch tensor in the shape of [1, C, H, W] or [C, H, W]
            prompt: the prompt to use, a string
            t: the time step to use, should be an int in the range of [0, 1000]
            up_ft_index: which upsampling block of the U-Net to extract feature, you can choose [0, 1, 2, 3]
            ensemble_size: the number of repeated images used in the batch to extract features
        Return:
            unet_ft: a torch tensor in the shape of [1, c, h, w]
        '''
        img_tensor = img_tensor.repeat(ensemble_size, 1, 1, 1).cuda() # ensem, c, h, w
        prompt_embeds = self.pipe._encode_prompt(
            prompt=prompt,
            device='cuda',
            num_images_per_prompt=1,
            do_classifier_free_guidance=False) # [1, 77, dim]
        prompt_embeds = prompt_embeds.repeat(ensemble_size, 1, 1)
        unet_ft_all = self.pipe(
            img_tensor=img_tensor,
            t=t,
            up_ft_indices=[up_ft_index],
            prompt_embeds=prompt_embeds)
        unet_ft = unet_ft_all['up_ft'][up_ft_index] # ensem, c, h, w
        unet_ft = unet_ft.mean(0, keepdim=True) # 1,c,h,w
        return unet_ft