Spaces:
Runtime error
Runtime error
File size: 20,373 Bytes
d3bdeec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 |
import torch
import numpy as np
import torch.nn.functional as F
from diffusers import StableDiffusionPipeline
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from typing import Any, Callable, Dict, List, Optional, Union
from sd.pnp_utils import register_time, register_attention_control_efficient_kv_w_mask, register_conv_control_efficient_w_mask
import torch.nn as nn
from sd.dift_sd import MyUNet2DConditionModel, OneStepSDPipeline
import ipdb
from tqdm import tqdm
from lib.midas import MiDas
class DDIMBackward(StableDiffusionPipeline):
def __init__(
self, vae, text_encoder, tokenizer, unet, scheduler,
safety_checker, feature_extractor,
requires_safety_checker: bool = True,
device='cuda', model_id='ckpt/stable-diffusion-2-1-base',depth_model='dpt_swin2_large_384'
):
super().__init__(
vae, text_encoder, tokenizer, unet, scheduler,
safety_checker, feature_extractor, requires_safety_checker,
)
self.dift_unet = MyUNet2DConditionModel.from_pretrained(model_id, subfolder="unet", torch_dtype=torch.float16 if 'cuda' in device else torch.float32)
self.onestep_pipe = OneStepSDPipeline.from_pretrained(model_id, unet=self.dift_unet, safety_checker=None, torch_dtype=torch.float16 if 'cuda' in device else torch.float32)
self.onestep_pipe = self.onestep_pipe.to(device)
if 'cuda' in device:
self.onestep_pipe.enable_attention_slicing()
self.onestep_pipe.enable_xformers_memory_efficient_attention()
self.ensemble_size = 4
self.cos = nn.CosineSimilarity(dim=1, eps=1e-6)
self.midas_model = MiDas(device,model_type=depth_model)
self.torch_dtype=torch.float16 if 'cuda' in device else torch.float32
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
t_start=None,
):
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
self.check_inputs(
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
)
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
do_classifier_free_guidance = guidance_scale > 1.0
prompt_embeds = self._encode_prompt(
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
)
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
num_channels_latents = self.unet.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if t_start and t >= t_start:
progress_bar.update()
continue
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
if output_type == "latent":
image = latents
has_nsfw_concept = None
elif output_type == "pil":
image = self.decode_latents(latents)
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
image = self.numpy_to_pil(image)
else:
image = self.decode_latents(latents)
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.final_offload_hook.offload()
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
def denoise_w_injection(
self,
prompt: Union[str, List[str]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
t_start=None,
attn=0.8,
f=0.5,
latent_mask=None,
guidance_loss_scale=0,
cfg_decay=False,
cfg_norm=False,
lr=1.0,
up_ft_indexes=[1,2],
img_tensor=None,
early_stop=50,
intrinsic=None, extrinsic=None, threshold=20,depth=None,
):
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
self.check_inputs(
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
)
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
do_classifier_free_guidance = guidance_scale > 1.0
prompt_embeds = self._encode_prompt(
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
)
if do_classifier_free_guidance:
prompt_embeds = torch.cat((prompt_embeds[1:], prompt_embeds[1:], prompt_embeds[:1]), dim=0)
else:
prompt_embeds = torch.cat([prompt_embeds]*2, dim=0)
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
num_channels_latents = self.unet.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
kv_injection_timesteps = self.scheduler.timesteps[:int(len(self.scheduler.timesteps) * attn)]
f_injection_timesteps = self.scheduler.timesteps[:int(len(self.scheduler.timesteps) * f)]
register_attention_control_efficient_kv_w_mask(self, kv_injection_timesteps, mask=latent_mask, do_classifier_free_guidance=do_classifier_free_guidance)
register_conv_control_efficient_w_mask(self, f_injection_timesteps, mask=latent_mask)
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if t_start and t >= t_start:
progress_bar.update()
continue
if i > early_stop: guidance_loss_scale = 0 # Early stop (optional)
# if t > 300: guidance_loss_scale = 0 # Early stop (optional)
register_time(self, t.item())
# Set requires grad
if guidance_loss_scale != 0:
latents = latents.detach().requires_grad_()
# expand the latents if we are doing classifier free guidance
latent_model_input = latents # latents: ori_z + wrap_z
if do_classifier_free_guidance:
latent_model_input = torch.cat([latent_model_input, latent_model_input[1:]], dim=0)
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
if guidance_loss_scale != 0:
with torch.no_grad():
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
).sample
else:
with torch.no_grad():
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
).sample
# perform guidance
if do_classifier_free_guidance:
cfg_scale = guidance_scale
if cfg_decay: cfg_scale = 1 + guidance_scale * (1-i/num_inference_steps)
noise_pred_text, wrap_noise_pred_text, wrap_noise_pred_uncond = noise_pred.chunk(3)
noise_pred = wrap_noise_pred_text + cfg_scale * (wrap_noise_pred_text - wrap_noise_pred_uncond)
else:
noise_pred_text, wrap_noise_pred_text = noise_pred.chunk(3)
noise_pred = wrap_noise_pred_text
if cfg_norm:
noise_pred = noise_pred * (torch.linalg.norm(wrap_noise_pred_uncond) / torch.linalg.norm(noise_pred))
if guidance_loss_scale != 0:
for up_ft_index in up_ft_indexes:
alpha_prod_t = self.scheduler.alphas_cumprod[t]
alpha_prod_t_prev = (
self.scheduler.alphas_cumprod[timesteps[i - 0]]
if i > 0 else self.scheduler.final_alpha_cumprod
)
mu = alpha_prod_t ** 0.5
mu_prev = alpha_prod_t_prev ** 0.5
sigma = (1 - alpha_prod_t) ** 0.5
sigma_prev = (1 - alpha_prod_t_prev) ** 0.5
pred_x0 = (latents - sigma_prev * noise_pred[:latents.shape[0]]) / mu_prev
unet_ft_all = self.onestep_pipe(
latents=pred_x0[:1].repeat(self.ensemble_size, 1, 1, 1),
t=t,
up_ft_indices=[up_ft_index],
prompt_embeds=prompt_embeds[:1].repeat(self.ensemble_size, 1, 1)
)
unet_ft1 = unet_ft_all['up_ft'][up_ft_index].mean(0, keepdim=True) # 1,c,h,w
unet_ft1_norm = unet_ft1 / torch.norm(unet_ft1, dim=1, keepdim=True)
unet_ft1_norm = self.midas_model.wrap_img_tensor_w_fft_ext(
unet_ft1_norm.to(self.torch_dtype),
torch.from_numpy(depth).to(device).to(self.torch_dtype),
intrinsic,
extrinsic[:3,:3], extrinsic[:3,3], threshold=threshold).to(self.torch_dtype)
unet_ft_all = self.onestep_pipe(
latents=pred_x0[1:2].repeat(self.ensemble_size, 1, 1, 1),
t=t,
up_ft_indices=[up_ft_index],
prompt_embeds=prompt_embeds[:1].repeat(self.ensemble_size, 1, 1)
)
unet_ft2 = unet_ft_all['up_ft'][up_ft_index].mean(0, keepdim=True) # 1,c,h,w
unet_ft2_norm = unet_ft2 / torch.norm(unet_ft2, dim=1, keepdim=True)
c = unet_ft2.shape[1]
loss = (-self.cos(unet_ft1_norm.squeeze().view(c, -1).T, unet_ft2_norm.squeeze().view(c, -1).T).mean() + 1) / 2.
# Get gradient
cond_grad = torch.autograd.grad(loss * guidance_loss_scale, latents)[0][1:2]
# compute the previous noisy sample x_t -> x_t-1
noise_pred_ = noise_pred - sigma_prev * cond_grad*lr
noise_pred_ = torch.cat([noise_pred_text, noise_pred_], dim=0)
# compute the previous noisy sample x_t -> x_t-1
with torch.no_grad():
latents = self.scheduler.step(noise_pred_, t, latents, **extra_step_kwargs).prev_sample
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
if output_type == "latent":
image = latents
has_nsfw_concept = None
elif output_type == "pil":
with torch.no_grad():
image = self.decode_latents(latents)
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
image = self.numpy_to_pil(image)
else:
image = self.decode_latents(latents)
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.final_offload_hook.offload()
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
@torch.no_grad()
def decoder(self, latents):
with torch.autocast(device_type=self.device, dtype=torch.float32):
latents = 1 / 0.18215 * latents
imgs = self.vae.decode(latents).sample
imgs = (imgs / 2 + 0.5).clamp(0, 1)
return imgs
def ddim_inversion_w_grad(self, latent, cond, stop_t, guidance_loss_scale=1.0, lr=1.0):
timesteps = reversed(self.scheduler.timesteps)
with torch.autocast(device_type=self.device, dtype=torch.float32):
for i, t in enumerate(tqdm(timesteps)):
if t >= stop_t:
break
if guidance_loss_scale != 0:
latent = latent.detach().requires_grad_()
cond_batch = cond.repeat(latent.shape[0], 1, 1)
alpha_prod_t = self.scheduler.alphas_cumprod[t]
alpha_prod_t_prev = (
self.scheduler.alphas_cumprod[timesteps[i - 1]]
if i > 0 else self.scheduler.final_alpha_cumprod
)
mu = alpha_prod_t ** 0.5
mu_prev = alpha_prod_t_prev ** 0.5
sigma = (1 - alpha_prod_t) ** 0.5
sigma_prev = (1 - alpha_prod_t_prev) ** 0.5
eps = self.onestep_pipe.unet(latent, t, encoder_hidden_states=cond_batch, up_ft_indices=[3], output_eps=True)['eps']
pred_x0 = (latent - sigma_prev * eps) / mu_prev
unet_ft_all = self.onestep_pipe(
latents=pred_x0[:1].repeat(self.ensemble_size, 1, 1, 1),
t=t,
up_ft_indices=[1],
prompt_embeds=cond_batch[:1].repeat(self.ensemble_size, 1, 1)
)
unet_ft1 = unet_ft_all['up_ft'][1].mean(0, keepdim=True) # 1,c,h,w
unet_ft1_norm = unet_ft1 / torch.norm(unet_ft1, dim=1, keepdim=True)
unet_ft_all = self.onestep_pipe(
latents=pred_x0[1:2].repeat(self.ensemble_size, 1, 1, 1),
t=t,
up_ft_indices=[1],
prompt_embeds=cond_batch[:1].repeat(self.ensemble_size, 1, 1)
)
unet_ft2 = unet_ft_all['up_ft'][1].mean(0, keepdim=True) # 1,c,h,w
unet_ft2_norm = unet_ft2 / torch.norm(unet_ft2, dim=1, keepdim=True)
c = unet_ft2.shape[1]
loss = (-self.cos(unet_ft1_norm.squeeze().view(c, -1).T.detach(), unet_ft2_norm.squeeze().view(c, -1).T).mean() + 1) / 2.
print(f'loss: {loss.item()}')
# Get gradient
cond_grad = torch.autograd.grad(loss * guidance_loss_scale, latent)[0]
# latent = latent.detach() - cond_grad * lr
latent = mu * pred_x0 + sigma * eps - cond_grad * lr
return latent
@torch.no_grad()
def DDPM_forward(x_t_dot, t_start, delta_t, ddpm_scheduler, generator):
# just simple implementation, this should have an analytical expression
# TODO: implementation analytical form
for delta in range(1, delta_t):
# noise = torch.randn_like(x_t_dot, generator=generator)
noise = torch.empty_like(x_t_dot).normal_(generator=generator)
beta = ddpm_scheduler.betas[t_start+delta]
std_ = beta ** 0.5
mu_ = ((1 - beta) ** 0.5) * x_t_dot
x_t_dot = mu_ + std_ * noise
return x_t_dot
|