Spaces:
Runtime error
Runtime error
File size: 20,844 Bytes
55ef7fd 19abdd8 55ef7fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 |
import gradio as gr
import torch
import numpy as np
import sd.gradio_utils as gradio_utils
import os
import cv2
import argparse
import ipdb
import argparse
from tqdm import tqdm
from diffusers import DDIMScheduler
from diffusers import DDIMScheduler, DDPMScheduler
from sd.core import DDIMBackward, DDPM_forward
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
def slerp(R_target, rotation_speed):
# Compute the angle of rotation from the rotation matrix
angle = np.arccos((np.trace(R_target) - 1) / 2)
# Handle the case where angle is very small (no significant rotation)
if angle < 1e-6:
return np.eye(3)
# Normalize the angle based on rotation_speed
normalized_angle = angle * rotation_speed
# Axis of rotation
axis = np.array([R_target[2, 1] - R_target[1, 2],
R_target[0, 2] - R_target[2, 0],
R_target[1, 0] - R_target[0, 1]])
axis = axis / np.linalg.norm(axis)
# Return the interpolated rotation matrix
return cv2.Rodrigues(axis * normalized_angle)[0]
def compute_extrinsic_parameters(clicked_point, depth, intrinsic_matrix, rotation_speed, step_x=0, step_y=0, step_z=0):
# Normalize the clicked point
x,y = clicked_point
x = int(x)
y = int(y)
x_normalized = (x - intrinsic_matrix[0, 2]) / intrinsic_matrix[0, 0]
y_normalized = (y - intrinsic_matrix[1, 2]) / intrinsic_matrix[1, 1]
# Depth at the clicked point
try:
z = depth[y, x]
except Exception:
ipdb.set_trace()
# Direction vector in camera coordinates
direction_vector = np.array([x_normalized * z, y_normalized * z, z])
# Calculate rotation angles to bring the clicked point to the center
angle_y = -np.arctan2(direction_vector[1], direction_vector[2]) # Rotation about Y-axis
angle_x = np.arctan2(direction_vector[0], direction_vector[2]) # Rotation about X-axis
# Apply rotation speed
angle_y *= rotation_speed
angle_x *= rotation_speed
# Compute rotation matrices
R_x = cv2.Rodrigues(np.array([1, 0, 0]) * angle_x)[0]
R_y = cv2.Rodrigues(np.array([0, 1, 0]) * angle_y)[0]
R = R_y @ R_x
# Compute rotation matrix to align direction vector with principal axis
T = np.array([step_x, -step_y, -step_z])
# Create extrinsic matrix
extrinsic_matrix = np.eye(4)
extrinsic_matrix[:3, :3] = R
extrinsic_matrix[:3, 3] = T
return extrinsic_matrix
@torch.no_grad()
def encode_imgs(imgs):
imgs = 2 * imgs - 1
posterior = pipe.vae.encode(imgs).latent_dist
latents = posterior.mean * 0.18215
return latents
@torch.no_grad()
def decode_latents(latents):
latents = 1 / 0.18215 * latents
imgs = pipe.vae.decode(latents).sample
imgs = (imgs / 2 + 0.5).clamp(0, 1)
return imgs
@torch.no_grad()
def ddim_inversion(latent, cond, stop_t=1000, start_t=-1):
timesteps = reversed(pipe.scheduler.timesteps)
pipe.scheduler.set_timesteps(num_inference_steps)
for i, t in enumerate(tqdm(timesteps)):
if t >= stop_t:
break
if t <=start_t:
continue
cond_batch = cond.repeat(latent.shape[0], 1, 1)
alpha_prod_t = pipe.scheduler.alphas_cumprod[t]
alpha_prod_t_prev = (
pipe.scheduler.alphas_cumprod[timesteps[i - 1]]
if i > 0 else pipe.scheduler.final_alpha_cumprod
)
mu = alpha_prod_t ** 0.5
mu_prev = alpha_prod_t_prev ** 0.5
sigma = (1 - alpha_prod_t) ** 0.5
sigma_prev = (1 - alpha_prod_t_prev) ** 0.5
eps = pipe.unet(latent, t, encoder_hidden_states=cond_batch).sample
pred_x0 = (latent - sigma_prev * eps) / mu_prev
latent = mu * pred_x0 + sigma * eps
return latent
@torch.no_grad()
def get_text_embeds(prompt, negative_prompt='', batch_size=1):
text_input = pipe.tokenizer(prompt, padding='max_length', max_length=77, truncation=True, return_tensors='pt')
text_embeddings = pipe.text_encoder(text_input.input_ids.to(device))[0]
uncond_input = pipe.tokenizer(negative_prompt, padding='max_length', max_length=77, truncation=True, return_tensors='pt')
uncond_embeddings = pipe.text_encoder(uncond_input.input_ids.to(device))[0]
# cat for final embeddings
text_embeddings = torch.cat([uncond_embeddings] * batch_size + [text_embeddings] * batch_size).to(torch_dtype)
return text_embeddings
def save_video(frames, fps=10, out_path='output/output.mp4'):
video_dims = (512, 512)
fourcc = cv2.VideoWriter_fourcc(*'MP4V')
video = cv2.VideoWriter(out_path,fourcc, fps, video_dims)
os.makedirs(os.path.dirname(out_path), exist_ok=True)
for frame in frames:
video.write(cv2.cvtColor(np.array(frame), cv2.COLOR_RGB2BGR))
video.release()
def draw_prompt(prompt):
return prompt
def to_image(tensor):
tensor = tensor.squeeze(0).permute(1, 2, 0)
arr = tensor.detach().cpu().numpy()
arr = (arr - arr.min()) / (arr.max() - arr.min())
arr = arr * 255
return arr.astype('uint8')
def add_points_to_image(image, points):
image = gradio_utils.draw_handle_target_points(image, points, 5)
return image
def on_click(state, seed, count, prompt, neg_prompt, speed_r, speed_x, speed_y, speed_z, t1, t2, t3, lr, guidance_weight,attn,threshold, early_stop, evt: gr.SelectData):
end_id = int(t1)
start_id=int(t2)
startstart_id = int(t3)
timesteps = reversed(ddim_scheduler.timesteps)
end_t = timesteps[end_id]
start_t = timesteps[start_id]
startstart_t = timesteps[startstart_id]
attn=float(attn)
cfg_norm=False
cfg_decay=False
guidance_loss_scale = float(guidance_weight)
lr = float(lr)
threshold = int(threshold)
up_ft_indexes = 2
early_stop = int(early_stop)
generator = torch.Generator(device).manual_seed(int(seed)) # 19491001
state['direction_offset'] = [int(evt.index[0]), int(evt.index[1])]
cond = pipe._encode_prompt(prompt, device, 1, True, '')
for _ in range(int(count)):
image = state['img']
img_tensor = torch.from_numpy(np.array(image) / 255.).to(device).to(torch_dtype).permute(2,0,1).unsqueeze(0)
_,_,depth = pipe.midas_model(np.array(image))
centered = is_centered(state['direction_offset'])
if centered:
extrinsic = compute_extrinsic_parameters(state['direction_offset'], depth, intrinsic, rotation_speed=float(0), step_z=float(speed_z), step_x=float(speed_x), step_y=float(speed_y))
state['centered'] = centered
else:
extrinsic = compute_extrinsic_parameters(state['direction_offset'], depth, intrinsic, rotation_speed=float(speed_r), step_z=float(speed_z), step_x=float(speed_x), step_y=float(speed_y))
this_latent = encode_imgs(img_tensor)
this_ddim_inv_noise_end = ddim_inversion(this_latent, cond[1:], stop_t=end_t)
this_ddim_inv_noise_start = ddim_inversion(this_latent, cond[1:], stop_t=startstart_t)
wrapped_this_ddim_inv_noise_end = pipe.midas_model.wrap_img_tensor_w_fft_ext(this_ddim_inv_noise_end.to(torch_dtype),
torch.from_numpy(depth).to(device).to(torch_dtype),
intrinsic,
extrinsic[:3,:3], extrinsic[:3,3], threshold=threshold).to(torch_dtype)
wrapped_this_ddim_inv_noise_start = ddim_inversion(wrapped_this_ddim_inv_noise_end, cond[1:], stop_t=start_t, start_t=end_t,)
wrapped_this_ddim_inv_noise_start = DDPM_forward(wrapped_this_ddim_inv_noise_start, t_start=start_t, delta_t=(startstart_id-start_id)*20,
ddpm_scheduler=ddpm_scheduler, generator=generator)
new_img = pipe.denoise_w_injection(
prompt, generator=generator, num_inference_steps=num_inference_steps,
latents=torch.cat([this_ddim_inv_noise_start, wrapped_this_ddim_inv_noise_start], dim=0), t_start=startstart_t,
latent_mask=torch.ones_like(this_latent[0,0,...], device=device,
).unsqueeze(0),
f=0, attn=attn, guidance_scale=7.5, negative_prompt=neg_prompt,
guidance_loss_scale=guidance_loss_scale, early_stop=early_stop, up_ft_indexes=[up_ft_indexes],
cfg_norm=cfg_norm, cfg_decay=cfg_decay, lr=lr,
intrinsic=intrinsic, extrinsic=extrinsic, threshold=threshold,depth=depth,
).images[1]
new_img = np.array(new_img).astype(np.uint8)
state['img'] = new_img
state['img_his'].append(new_img)
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 1.
state['depth_his'].append(depth)
return new_img, depth, state['img_his'], state
def is_centered(clicked_point, image_dimensions=(512, 512), threshold=5):
image_center = [dim // 2 for dim in image_dimensions]
return all(abs(clicked_point[i] - image_center[i]) <= threshold for i in range(2))
def gen_img(prompt, neg_prompt, state, seed):
generator = torch.Generator(device).manual_seed(int(seed)) # 19491001
img = pipe(
prompt, generator=generator, num_inference_steps=num_inference_steps, negative_prompt=neg_prompt,
).images[0]
img_array = np.array(img)
_,_,depth = pipe.midas_model(img_array)
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 1.
state['img_his'] = [img_array]
state['depth_his'] = [depth]
try:
state['ori_img'] = img_array
state['img'] = img_array
except Exception:
ipdb.set_trace()
return img_array, depth, [img_array], state
def on_undo(state):
if len(state['img_his'])>1:
del state['img_his'][-1]
del state['depth_his'][-1]
image = state['img_his'][-1]
depth = state['depth_his'][-1]
else:
image = state['img_his'][-1]
depth = state['depth_his'][-1]
state['img'] = image
return image, depth, state['img_his'], state
def on_reset(state):
image = state['img_his'][0]
depth = state['depth_his'][0]
state['img'] = image
state['img_his'] = [image]
state['depth_his'] = [depth]
return image, depth, state['img_his'], state
def get_prompt(text):
return text
def on_save(state, video_name):
save_video(state['img_his'], fps=5, out_path=f'output/{video_name}.mp4')
def on_seed(seed):
return int(seed)
def main(args):
with gr.Blocks() as demo:
gr.Markdown(
"""
# DreamDrone
Official implementation of [DreamDrone](https://hyokong.github.io/publications/dreamdrone-page/).
**TL;DR:** Navigate dreamscapes with a ***click*** – your chosen point guides the drone's flight in a thrilling visual journey.
## Tutorial
1. Enter your prompt (and a negative prompt, if necessary) in the textbox, then click the `Generate first image` button.
2. Adjust the camera's moving speed in the `Direction` panel and set hyperparameters in the `Hyper params` panel.
3. Click on the generated image to make the camera fly towards the clicked direction.
4. The generated images will be displayed in the gallery at the bottom. You can view these images by clicking on them in the gallery or by using the left/right arrow buttons.
## Hints
- You can set the number of images to generate after clicking on an image, for convenience.
- Our system uses a right-hand coordinate system, with the Z-axis pointing into the image.
- The rotation speed determines how quickly the camera moves towards the clicked direction (rotation only, no translation). Increase this if you need faster camera pose changes.
- The Speed XYZ-axis controls the camera's movement along the X, Y, and Z axes. Adjust these parameters for different movement styles, similar to a camera arm.
- $t_1$ represents the timestep that wraps the latent code.
- Noise is added from $t_1$ to $t_3$. Between $t_1$ and $t_2$, noise is sourced from a pretrained diffusion U-Net. From $t_2$ to $t_3$, random Gaussian noise is used.
- The `Learning rate` and `Feature Correspondence Guidance` control the feature-correspondence guidance weight during the denoising process (from timestep $t_3$ to $0$).
- The `KV injection` parameter adjusts the extent of key and value injection from the current frame to the next.
> If you encounter any problems, please open an issue. Also, don't forget to star the [Official Github Repo](https://github.com/HyoKong/DreamDrone).
***Without further ado, welcome to DreamDrone – enjoy piloting your virtual drone through imaginative landscapes!***
""",
)
img = np.zeros((512, 512, 3)).astype(np.uint8)
depth_img = np.zeros((512, 512, 3)).astype(np.uint8)
intrinsic_matrix = np.array([[1000, 0, 512/2],
[0, 1000, 512/2],
[0, 0, 1]]) # Example intrinsic matrix
extrinsic_matrix = np.array([[1.0, 0.0, 0.0, 0.0],
[0.0, 1.0, 0.0, 0.0],
[0.0, 0.0, 1.0, 0.0]],
dtype=np.float32)
direction_offset = (255, 255)
state = gr.State({
'ori_img': img,
'img': None,
'centered': False,
'img_his': [],
'depth_his': [],
'intrinsic': intrinsic_matrix,
'extrinsic': extrinsic_matrix,
'direction_offset': direction_offset
})
with gr.Row():
with gr.Column(scale=0.2):
with gr.Accordion("Direction"):
speed_r = gr.Number(value=0.1, label='Rotation Speed', step=0.01, minimum=0, maximum=1)
speed_x = gr.Number(value=0, label='Speed X-axis', step=1, minimum=-10, maximum=20.0)
speed_y = gr.Number(value=0, label='Speed Y-axis', step=1, minimum=-10, maximum=20.0)
speed_z = gr.Number(value=5, label='Speed Z-axis', step=1, minimum=-10, maximum=20.0)
with gr.Accordion('Hyper params'):
with gr.Row():
count = gr.Number(value=5, label='Num. of generated images', step=1, minimum=1, maximum=10, precision=0)
seed = gr.Number(value=19491000, label='Seed', precision=0)
t1 = gr.Slider(1, 49, 2, step=1, label='t1')
t2 = gr.Slider(1, 49, 12, step=1, label='t2')
t3 = gr.Slider(1, 49, 27, step=1, label='t3')
lr = gr.Slider(0, 500, 300, step=1, label='Learning rate')
guidance_weight = gr.Slider(0, 10, 0.1, step=0.1, label='Feature correspondance guidance')
attn = gr.Slider(0, 1, 0.5, step=0.1, label='KV injection')
threshold = gr.Slider(0, 31, 20, step=1, label='Threshold of low-pass filter')
early_stop = gr.Slider(0, 50, 48, step=1, label='Early stop timestep for feature-correspondance guidance')
video_name = gr.Textbox(
label="Saved video name", show_label=True, max_lines=1, placeholder='saved video name', value='output',
).style()
with gr.Column():
with gr.Box():
with gr.Row().style(mobile_collapse=False, equal_height=True):
text = gr.Textbox(
label="Enter your prompt", show_label=False, max_lines=1, placeholder='Enter your prompt', value='Backyards of Old Houses in Antwerp in the Snow, van Gogh',
).style(
border=(True, False, True, True),
rounded=(True, False, False, True),
container=False,
)
with gr.Row().style(mobile_collapse=False, equal_height=True):
with gr.Column(scale=0.8):
neg_text = gr.Textbox(
label="Enter your negative prompt", show_label=False, max_lines=1, value='', placeholder='Enter your negative prompt',
).style(
border=(True, False, True, True),
rounded=(True, False, False, True),
container=False,
)
with gr.Column(scale=0.2):
gen_btn = gr.Button("Generate first image").style(
margin=False,
rounded=(False, True, True, False),
)
with gr.Box():
with gr.Row().style(mobile_collapse=False, equal_height=True):
with gr.Column():
with gr.Tab('Current view'):
image = gr.Image(img).style(height=600, width=600)
with gr.Column():
with gr.Tab('Depth'):
depth_image = gr.Image(depth_img).style(height=600, width=600)
with gr.Row():
with gr.Column(min_width=100):
reset_btn = gr.Button('Clear All')
with gr.Column(min_width=100):
undo_btn = gr.Button('Undo Last')
with gr.Column(min_width=100):
save_btn = gr.Button('Save Video')
with gr.Row():
with gr.Tab('Generated image gallery'):
gallery = gr.Gallery(
label='Generated images', show_label=False, elem_id='gallery', preview=True, rows=1, height=368,
).style()
image.select(on_click, [state, seed, count, text, neg_text, speed_r, speed_x, speed_y, speed_z, t1, t2, t3, lr, guidance_weight,attn,threshold, early_stop], [image, depth_image, gallery, state])
text.submit(get_prompt, inputs=[text], outputs=[text])
neg_text.submit(get_prompt, inputs=[neg_text], outputs=[neg_text])
gen_btn.click(gen_img, inputs=[text, neg_text, state, seed], outputs=[image, depth_image, gallery, state])
reset_btn.click(on_reset, inputs=[state], outputs=[image, depth_image, gallery, state])
undo_btn.click(on_undo, inputs=[state], outputs=[image, depth_image, gallery, state])
save_btn.click(on_save, inputs=[state, video_name], outputs=[])
global num_inference_steps
global pipe
global intrinsic
global ddim_scheduler
global ddpm_scheduler
global device
global model_id
global torch_dtype
num_inference_steps = 50
device = args.device
model_id = args.model_id
ddim_scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
ddpm_scheduler = DDPMScheduler.from_pretrained(model_id, subfolder="scheduler")
torch_dtype=torch.float16 if 'cuda' in str(device) else torch.float32
pipe = DDIMBackward.from_pretrained(
model_id, scheduler=ddim_scheduler, torch_dtype=torch_dtype,
cache_dir='.', device=str(device), model_id=model_id, depth_model=args.depth_model,
).to(str(device))
if 'cuda' in str(device):
pipe.enable_attention_slicing()
pipe.enable_xformers_memory_efficient_attention()
intrinsic = np.array([[1000, 0, 256],
[0, 1000., 256],
[0, 0, 1]]) # Example intrinsic matrix
return demo
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--device', default='cuda')
parser.add_argument('--model_id', default='ckpt/stable-diffusion-2-1-base')
parser.add_argument('--depth_model', default='dpt_beit_large_512', choices=['dpt_beit_large_512', 'dpt_swin2_large_384'])
parser.add_argument('--share', action='store_true')
parser.add_argument('-p', '--port', type=int, default=None)
parser.add_argument('--ip', default=None)
args = parser.parse_args()
demo = main(args)
print('Successfully loaded, starting gradio demo')
demo.queue(concurrency_count=1, max_size=20).launch(share=args.share, server_name=args.ip, server_port=args.port)
|