Spaces:
Running
Running
File size: 5,750 Bytes
1ee396e abc6868 1ee396e 4784f3b 1ee396e 4784f3b 1ee396e abc6868 1ee396e abc6868 1f2982b 1ee396e 1f2982b a4274f6 1f2982b a4274f6 1f2982b a4274f6 1f2982b 8d5fa5e a4274f6 1f2982b 8d5fa5e a4274f6 1f2982b a4274f6 1f2982b 1ee396e 1f2982b a4274f6 1ee396e 08efe9a 1ee396e a4274f6 1ee396e 9b52dc7 1ee396e abc6868 1ee396e 08efe9a 1ee396e 08efe9a 1ee396e 9a49dcc 1ee396e abc6868 1ee396e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import os
# Redirect cache to a writable path inside container
os.environ["XDG_CACHE_HOME"] = "/tmp/.cache"
import gradio as gr
from impresso_pipelines.ocrqa import OCRQAPipeline
pipeline = OCRQAPipeline()
LANGUAGES = ["en", "de", "fr"]
# Example OCR text (German text with typical OCR errors)
EXAMPLE_TEXT = """Vieles Seltsame geschieht auf Erden :
Nichts Seltsameres sieht der Mond
Als das Glück, das im Knopfloch wohnt.
Zaubrisch faßt es den ernsten Mann.
Ohne nach Weib u. Kinjd zu fragen
Reitet er aus, nach dem Glück zu jagen,
Nur nacb ihm war stets sein Vegehr.
Aber neben ihm 1reitet der Dämon her
Des Ehrgeizes mit finsterer Tücke,
Und so jagt er zuletzt auf die Brücke,
Die über dem Abgrund, d:m nächtlich schwarzen
Jählings abbricht."""
def process_ocr_qa(text, lang_choice):
try:
lang = None if lang_choice == "Auto-detect" else lang_choice
result = pipeline(text, language=lang, diagnostics=True)
# Format the output for better readability
if isinstance(result, dict):
output_lines = []
# Language detection
if 'language' in result:
output_lines.append(f"🌍 Language: {result['language']}")
# Quality score
if 'score' in result:
score = result['score']
score_emoji = "🟢" if score >= 0.8 else "🟡" if score >= 0.5 else "🔴"
output_lines.append(f"{score_emoji} Quality Score: {score:.1f}")
# Diagnostics section
if 'diagnostics' in result and result['diagnostics']:
diagnostics = result['diagnostics']
# Model information
if 'model_id' in diagnostics:
output_lines.append(f"🤖 Model: {diagnostics['model_id']}")
# Known tokens
if 'known_tokens' in diagnostics and diagnostics['known_tokens']:
known_tokens = diagnostics['known_tokens']
output_lines.append(f"✅ Known tokens ({len(known_tokens)}): {', '.join(known_tokens)}")
# Unknown tokens (potential OCR errors)
if 'unknown_tokens' in diagnostics and diagnostics['unknown_tokens']:
unknown_tokens = diagnostics['unknown_tokens']
output_lines.append(f"❌ Potential OCR errors ({len(unknown_tokens)}): {', '.join(unknown_tokens)}")
elif 'unknown_tokens' in diagnostics:
output_lines.append("✨ No potential OCR errors detected!")
# Other fields
for key, value in result.items():
if key not in ['language', 'score', 'diagnostics']:
output_lines.append(f"🔍 {key.replace('_', ' ').title()}: {value}")
return "\n\n".join(output_lines)
else:
return f"✨ Processed Result:\n{result}"
except Exception as e:
print("❌ Pipeline error:", e)
return f"Error: {e}"
# Create the interface with logo and improved description
with gr.Blocks(title="OCR QA Demo") as demo:
# Add logo at the top
gr.Image("logo.jpeg", label=None, show_label=False, container=False, height=100)
gr.Markdown(
"""
# 🔍 OCR Quality Assessment Demo
This demo showcases the **OCR Quality Assessment (OCRQA)** pipeline developed as part of the [Impresso Project](https://impresso-project.ch). The pipeline evaluates the quality of text extracted via **Optical Character Recognition (OCR)** by estimating the proportion of recognizable words.
It returns:
- a **quality score** between **0.0 (poor)** and **1.0 (excellent)**, and
- a list of **potential OCR errors** (unrecognized tokens).
You can try the example below (a German text containing typical OCR errors), or paste your own OCR-processed text to assess its quality.
"""
)
with gr.Row():
with gr.Column():
text_input = gr.Textbox(
label="Enter OCR Text",
value=EXAMPLE_TEXT,
lines=8,
placeholder="Enter your OCR text here..."
)
lang_dropdown = gr.Dropdown(
choices=["Auto-detect"] + LANGUAGES,
value="de",
label="Language"
)
submit_btn = gr.Button("🔍 Analyze OCR Quality", variant="primary")
with gr.Column():
with gr.Row():
output = gr.Textbox(
label="Analysis Results",
lines=15,
placeholder="Results will appear here...",
scale=10
)
info_btn = gr.Button("Pipeline Info", size="sm", scale=1)
# Info modal/accordion for pipeline details
with gr.Accordion("📝 About the OCR QA Pipeline", open=False, visible=False) as info_accordion:
gr.Markdown(
"""
- **Quality Score**: Evaluates the overall quality of OCR text. From 0.0 (poor) to 1.0 (excellent)
- **Known tokens**: Words recognized as valid in the selected language
- **Potential OCR errors**: Identifies common OCR mistakes and artifacts
"""
)
submit_btn.click(
fn=process_ocr_qa,
inputs=[text_input, lang_dropdown],
outputs=output
)
# Toggle info visibility when info button is clicked
info_btn.click(
fn=lambda: gr.Accordion(visible=True, open=True),
outputs=info_accordion
)
demo.launch(server_name="0.0.0.0", server_port=7860) |