File size: 10,503 Bytes
94a168b
fc21113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
import gradio as gr
import httpx
import os
import json
from dotenv import load_dotenv
from typing import List, Dict, Tuple
import asyncio

# Load environment variables
load_dotenv()

# API Keys and Configuration
SERPAPI_KEY = os.getenv("SERPAPI_KEY")
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
MAX_SEARCH_RESULTS = int(os.getenv("MAX_SEARCH_RESULTS", "7"))
GROQ_MODEL = os.getenv("GROQ_MODEL", "meta-llama/llama-4-maverick-17b-128e-instruct")

# SerpAPI integration
async def search_topic(topic: str) -> List[Dict[str, str]]:
    """
    Search for a topic using SerpAPI and return structured search results.
    
    Args:
        topic: The topic to search for
        
    Returns:
        A list of dictionaries containing title and snippet for each search result
    """
    if not SERPAPI_KEY:
        raise ValueError("SerpAPI key is not configured")
    
    params = {
        'api_key': SERPAPI_KEY,
        'q': topic,
        'google_domain': 'google.com',
        'gl': 'us',
        'hl': 'en',
        'num': MAX_SEARCH_RESULTS
    }
    
    # Make the request to SerpAPI
    async with httpx.AsyncClient(timeout=30.0) as client:
        response = await client.get('https://serpapi.com/search', params=params)
        
        if response.status_code != 200:
            raise Exception(f"SerpAPI request failed with status code {response.status_code}: {response.text}")
            
        data = response.json()
        
    # Extract organic search results
    search_results = []
    if 'organic_results' in data:
        for result in data['organic_results'][:MAX_SEARCH_RESULTS]:
            search_result = {
                'title': result.get('title', ''),
                'snippet': result.get('snippet', '')
            }
            search_results.append(search_result)
    
    if not search_results:
        raise Exception("No search results found")
        
    return search_results

# GroqCloud API integration
async def _call_groq_api(prompt: str) -> str:
    """
    Helper function to call GroqCloud API.
    
    Args:
        prompt: The prompt to send to GroqCloud
        
    Returns:
        The generated text response
    """
    if not GROQ_API_KEY:
        raise ValueError("GroqCloud API key is not configured")
    
    headers = {
        "Authorization": f"Bearer {GROQ_API_KEY}",
        "Content-Type": "application/json"
    }
    
    payload = {
        "model": GROQ_MODEL,
        "messages": [
            {"role": "user", "content": prompt}
        ],
        "temperature": 0.7,
        "max_tokens": 1024
    }
    
    async with httpx.AsyncClient(timeout=60.0) as client:
        response = await client.post(
            "https://api.groq.com/openai/v1/chat/completions",
            headers=headers,
            json=payload
        )
        
        if response.status_code != 200:
            raise Exception(f"GroqCloud API request failed with status code {response.status_code}: {response.text}")
            
        response_data = response.json()
        
    # Extract the assistant's message content
    return response_data["choices"][0]["message"]["content"].strip()

async def generate_linkedin_post(topic: str, search_results: List[Dict[str, str]]) -> Tuple[str, str]:
    """
    Generate a LinkedIn post based on search results using GroqCloud API.
    
    Args:
        topic: The original search topic
        search_results: List of search results with title and snippet
        
    Returns:
        A tuple containing (summary, linkedin_post)
    """
    # Format the search results into a single context string
    context = "\n\n".join([
        f"Title: {result['title']}\nSnippet: {result['snippet']}"
        for result in search_results
    ])
    
    # Step 1: Create a summary of the search results
    summary_prompt = f"""
    You are a helpful research assistant. Summarize the following search results about "{topic}" 
    in a clear, comprehensive way that captures the key information. Focus on recent trends, 
    statistics, expert opinions, and noteworthy developments.

    SEARCH RESULTS:
    {context}
    
    Summary:
    """
    
    summary = await _call_groq_api(summary_prompt)
    
    # Step 2: Generate a LinkedIn post based on the summary
    post_prompt = f"""
    You're an expert LinkedIn content writer. Write an engaging LinkedIn post about "{topic}" 
    based on the following research summary:
    
    RESEARCH SUMMARY:
    {summary}
    
    Follow these style guidelines:
    🧠 You are Prerit Singh — a creative AI enthusiast, builder, and storyteller.
Your posts feel like:

Talking to a sharp, chilled-out friend

A human behind the tech, not a robot explaining tech

Sharing real-world experiments with excitement, not just dry facts

✍️ Writing Style Rules
Tone
Friendly, approachable, and relatable

Confident but grounded (not boasting)

Curious and playful (celebrating discoveries)

Slightly witty and humorous where it fits naturally

Honest reactions ("even I was shocked", "felt like magic", "saved me weeks")

Sentence Behavior
Mix short punchy sentences and slightly longer story sentences

Avoid complex or heavy words — talk in everyday English

Use occasional slang and desi-English flavor naturally ("bhai", "bro", "full time-waste", "no kidding")

Speak like you're narrating an interesting story to a friend over chai

Active voice always:

NOT "It was built by me"

YES "I built it"

Emotional Behavior
Wonder, excitement, playfulness

Mild self-deprecating humor sometimes ("pizza didn't even show up yet, bro")

Human imperfection is okay (showing surprise, struggle, trial and error)

Flow and Formatting
1. Hook:

1 or 2 lines

Must grab attention instantly

Methods:

Surprising statement

Teasing curiosity

Personal excitement

Example Hooks:

"Built a small AI tool — but it feels like magic."

"So I was doing some market research... and AI just blew my mind."

2. Story/Body:

Tell what you built/tested/discovered

Keep paras max 1-3 sentences long

Use arrows (→), bullets (•), or short lists to break information

Include "how you did it" in simple steps

Highlight the “magic moment” (the wow factor)

Examples of transitional words you use:

"So I thought —"

"Here’s what happened —"

"The process? Surprisingly simple!"

3. Key Outcomes:

After explaining, list what the audience will get or learn

Make it visual with arrows (→) or bullets

Example:

→ Upload your meal photo

→ Instantly get calories and macros

→ Works even for Indian dishes

4. Personal Reflection:

Always include your honest reaction

Examples:

"Works surprisingly well (even I was shocked)"

"AI didn’t just help — it crushed it."

"Honestly, this saved me weeks."

5. Call-to-Action (CTA):

Invite conversation or opinions, NOT hard selling

Example CTAs:

"Would you use something like this?"

"Curious to know your thoughts."

"Hit me up in the comments if you want the prompt!"

✅ CTA tone must be casual and welcoming, not salesy.

Visual Style
Break paragraphs after every 1-2 sentences

Make it breathable and easy to skim

Use emojis occasionally (🍕🚀🔥), but only if it adds personality

No heavy decoration. Keep it clean and airy.

Hashtags
Only at the end

5–7 natural hashtags based on post topic

Examples:

#AI #TechInnovation #OpenSource #BrandStrategy #CreativeTech #Innovation

🎯 Content Topics That Fit Prerit’s Style:
Real AI experiments (even small ones)

Discovering or comparing AI models/tools

How AI made everyday work faster/easier/more fun

Bridging personal life moments (pizza, Zoom chaos) with tech learnings

Storytelling about solving problems with creativity + AI

Friendly how-to guides (light style, not heavy teaching)

🔥 Personality Extras (Optional Flavors to Add)
✅ Use small reactions:

"felt like magic"

"no kidding"

"bam — it’s done"

"blew me away"

✅ Use cultural metaphors:

"full time-waste, bhai"

"while my chai was still brewing"

"before the pizza even arrived"

✅ Occasional casual audience references:

"bro," "bhai," "you know the vibe," "trust me," "hands down"

✅ Fun closing lines:

"Chalo, now back to building!"

"Ready to see the magic?"

"This AI thing’s just getting started!"

✅ Reminder for AI: The post must feel human, fun, inspiring, and useful.
It must sound like Prerit Singh talking — not a formal LinkedIn MBA consultant.


    
    LinkedIn Post:
    """
    
    linkedin_post = await _call_groq_api(post_prompt)
    
    return summary, linkedin_post

# Gradio interface function
async def process_topic(topic: str, progress=gr.Progress()):
    """
    Process a topic to generate a LinkedIn post.
    
    Args:
        topic: The topic to generate content for
        progress: Gradio progress tracker
        
    Returns:
        The generated LinkedIn post
    """
    if not topic.strip():
        return "Please enter a topic to generate a LinkedIn post."
    
    try:
        progress(0.1, desc="Starting search...")
        search_results = await search_topic(topic)
        
        progress(0.4, desc="Analyzing search results...")
        summary, post = await generate_linkedin_post(topic, search_results)
        
        progress(0.9, desc="Finalizing post...")
        return post
    except Exception as e:
        return f"Error: {str(e)}"

# Create Gradio UI
with gr.Blocks(title="LinkedIn Post Generator", theme=gr.themes.Soft()) as app:
    gr.Markdown("# LinkedIn Post Generator")
    gr.Markdown("Enter a topic and get a ready-to-post LinkedIn update based on latest information.")
    
    with gr.Row():
        topic_input = gr.Textbox(
            label="Topic",
            placeholder="Enter a topic (e.g., AI trends 2025, remote work benefits, climate innovation)",
            lines=1
        )
    
    generate_button = gr.Button("Generate LinkedIn Post", variant="primary")
    
    with gr.Row():
        output = gr.Textbox(
            label="Your LinkedIn Post",
            placeholder="Your generated post will appear here...",
            lines=12
        )
    
    generate_button.click(
        fn=process_topic,
        inputs=topic_input,
        outputs=output
    )
    
    gr.Markdown("### How it works")
    gr.Markdown("""
    1. We search the web for real-time information about your topic
    2. An AI summarizes the most relevant information
    3. Another AI crafts a LinkedIn post in a friendly, engaging style
    """)

# Launch the app
app.launch()