Spaces:
Sleeping
Sleeping
File size: 3,771 Bytes
d1343e4 559ea97 1391fc1 2a813c3 d1343e4 1391fc1 d1343e4 1391fc1 d1343e4 1391fc1 2a813c3 d1343e4 1391fc1 d1343e4 536efdb 2a813c3 d1343e4 b995a3b 2a813c3 559ea97 e3396ba d1343e4 e3396ba 1391fc1 e3396ba d1343e4 b995a3b e3396ba e476745 559ea97 e3396ba 7fd3f9f 021692e d1343e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
# Importing libraries
from transformers import M2M100Tokenizer, M2M100ForConditionalGeneration
from quart import Quart, request
from llama_cpp import Llama
import psutil
# Initing things
app = Quart(__name__) # Quart app
llm = Llama(model_path="./model.bin") # LLaMa model
llama_model_name = "TheBloke/Llama-2-13B-chat-GGUF"
translator_tokenizer = M2M100Tokenizer.from_pretrained( # tokenizer for translator
"facebook/m2m100_1.2B", cache_dir="translator/"
)
translator_model = M2M100ForConditionalGeneration.from_pretrained( # translator model
"facebook/m2m100_1.2B", cache_dir="translator/"
)
translator_model.eval()
# Preparing things to work
translator_tokenizer.src_lang = "en"
# Loading prompt
with open('system.prompt', 'r', encoding='utf-8') as f:
prompt = f.read()
# Defining
@app.post("/request")
async def echo():
try:
data = await request.get_json()
maxTokens = data.get("max_tokens", 64)
if isinstance(data.get("system_prompt"), str):
userPrompt = data.get("system_prompt") + "\n\nUser: " + data['request'] + "\nAssistant: "
else:
userPrompt = prompt + "\n\nUser: " + data['request'] + "\nAssistant: "
except:
return {"error": "Not enough data", "output": "Oops! Error occured! If you're a developer, using this API, check 'error' key."}, 400
try:
output = llm(userPrompt, max_tokens=maxTokens, stop=["User:", "\n"], echo=False)
text = output["choices"][0]["text"]
# i allowed only certain languages:
# russian (ru), ukranian (uk), chinese (zh)
if isinstance(data.get("target_lang"), str) and data.get("target_lang").lower() in ["ru", "uk", "zh"]:
encoded_input = translator_tokenizer(output, return_tensors="pt")
generated_tokens = translator_model.generate(
**encoded_input, forced_bos_token_id=translator_tokenizer.get_lang_id(data.get("target_lang"))
)
translated_text = translator_tokenizer.batch_decode(
generated_tokens, skip_special_tokens=True
)[0]
return {"output": text, "translated_output": translated_text}
return {"output": text}
except Exception as e:
print(e)
return {"error": str(e), "output": "Oops! Internal server error. Check the logs. If you're a developer, using this API, check 'error' key."}, 500
@app.get("/")
async def get():
return '''<style>a:visited{color:black;}</style>
<h1>Hello, world!</h1>
This is showcase how to make own server with Llama2 model.<br>
I'm using here 7b model just for example. Also here's only CPU power.<br>
But you can use GPU power as well!<br>
<h1>How to GPU?</h1>
Change <code>`CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS`</code> in Dockerfile on <code>`CMAKE_ARGS="-DLLAMA_CUBLAS=on"`</code>. Also you can try <code>`DLLAMA_CLBLAST`</code>, <code>`DLLAMA_METAL`</code> or <code>`DLLAMA_METAL`</code>.<br>
Powered by <a href="https://github.com/abetlen/llama-cpp-python">llama-cpp-python</a>, <a href="https://quart.palletsprojects.com/">Quart</a> and <a href="https://www.uvicorn.org/">Uvicorn</a>.<br>
<h1>How to test it on own machine?</h1>
You can install Docker, build image and run it. I made <code>`run-docker.sh`</code> for ya. To stop container run <code>`docker ps`</code>, find name of container and run <code>`docker stop _dockerContainerName_`</code><br>
Or you can once follow steps in Dockerfile and try it on your machine, not in Docker.<br>
<br>''' + f"Memory used: {psutil.virtual_memory()[2]}<br>" + '''
<script>document.write("<b>URL of space:</b> "+window.location.href);</script>''' |