Spaces:
Runtime error
Runtime error
File size: 21,660 Bytes
ad7bc89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 |
from contextlib import contextmanager
from typing import Any, Dict, List, Tuple, Union, DefaultDict
import pytorch_lightning as pl
import torch
from omegaconf import ListConfig, OmegaConf
from safetensors.torch import load_file as load_safetensors
from torch.optim.lr_scheduler import LambdaLR
from einops import rearrange
import math
import torch.nn as nn
from ..modules import UNCONDITIONAL_CONFIG
from ..modules.diffusionmodules.wrappers import OPENAIUNETWRAPPER
from ..modules.ema import LitEma
from ..util import (
default,
disabled_train,
get_obj_from_str,
instantiate_from_config,
log_txt_as_img,
)
import collections
from functools import partial
def save_activations(
activations: DefaultDict,
name: str,
module: nn.Module,
inp: Tuple,
out: torch.Tensor
) -> None:
"""PyTorch Forward hook to save outputs at each forward
pass. Mutates specified dict objects with each fwd pass.
"""
if isinstance(out, tuple):
if out[1] is None:
activations[name].append(out[0].detach())
class DiffusionEngine(pl.LightningModule):
def __init__(
self,
network_config,
denoiser_config,
first_stage_config,
conditioner_config: Union[None, Dict, ListConfig, OmegaConf] = None,
sampler_config: Union[None, Dict, ListConfig, OmegaConf] = None,
optimizer_config: Union[None, Dict, ListConfig, OmegaConf] = None,
scheduler_config: Union[None, Dict, ListConfig, OmegaConf] = None,
loss_fn_config: Union[None, Dict, ListConfig, OmegaConf] = None,
network_wrapper: Union[None, str] = None,
ckpt_path: Union[None, str] = None,
use_ema: bool = False,
ema_decay_rate: float = 0.9999,
scale_factor: float = 1.0,
disable_first_stage_autocast=False,
input_key: str = "jpg",
log_keys: Union[List, None] = None,
no_cond_log: bool = False,
compile_model: bool = False,
trainkeys='pose',
multiplier=0.05,
loss_rgb_lambda=20.,
loss_fg_lambda=10.,
loss_bg_lambda=20.,
):
super().__init__()
self.log_keys = log_keys
self.input_key = input_key
self.trainkeys = trainkeys
self.multiplier = multiplier
self.loss_rgb_lambda = loss_rgb_lambda
self.loss_fg_lambda = loss_fg_lambda
self.loss_bg_lambda = loss_bg_lambda
self.rgb = network_config.params.rgb
self.rgb_predict = network_config.params.rgb_predict
self.add_token = ('modifier_token' in conditioner_config.params.emb_models[1].params)
self.optimizer_config = default(
optimizer_config, {"target": "torch.optim.AdamW"}
)
model = instantiate_from_config(network_config)
self.model = get_obj_from_str(default(network_wrapper, OPENAIUNETWRAPPER))(
model, compile_model=compile_model
)
self.denoiser = instantiate_from_config(denoiser_config)
self.sampler = (
instantiate_from_config(sampler_config)
if sampler_config is not None
else None
)
self.conditioner = instantiate_from_config(
default(conditioner_config, UNCONDITIONAL_CONFIG)
)
self.scheduler_config = scheduler_config
self._init_first_stage(first_stage_config)
self.loss_fn = (
instantiate_from_config(loss_fn_config)
if loss_fn_config is not None
else None
)
self.use_ema = use_ema
if self.use_ema:
self.model_ema = LitEma(self.model, decay=ema_decay_rate)
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
self.scale_factor = scale_factor
self.disable_first_stage_autocast = disable_first_stage_autocast
self.no_cond_log = no_cond_log
if ckpt_path is not None:
self.init_from_ckpt(ckpt_path)
blocks = []
if self.trainkeys == 'poseattn':
for x in self.model.diffusion_model.named_parameters():
if not ('pose' in x[0] or 'transformer_blocks' in x[0]):
x[1].requires_grad = False
else:
if 'pose' in x[0]:
x[1].requires_grad = True
blocks.append(x[0].split('.pose')[0])
blocks = set(blocks)
for x in self.model.diffusion_model.named_parameters():
if 'transformer_blocks' in x[0]:
reqgrad = False
for each in blocks:
if each in x[0] and ('attn1' in x[0] or 'attn2' in x[0] or 'pose' in x[0]):
reqgrad = True
x[1].requires_grad = True
if not reqgrad:
x[1].requires_grad = False
elif self.trainkeys == 'pose':
for x in self.model.diffusion_model.named_parameters():
if not ('pose' in x[0]):
x[1].requires_grad = False
else:
x[1].requires_grad = True
elif self.trainkeys == 'all':
for x in self.model.diffusion_model.named_parameters():
x[1].requires_grad = True
self.model = self.model.to(memory_format=torch.channels_last)
def register_activation_hooks(
self,
) -> None:
self.activations_dict = collections.defaultdict(list)
handles = []
for name, module in self.model.diffusion_model.named_modules():
if len(name.split('.')) > 1 and name.split('.')[-2] == 'transformer_blocks':
if hasattr(module, 'pose_emb_layers'):
handle = module.register_forward_hook(
partial(save_activations, self.activations_dict, name)
)
handles.append(handle)
self.handles = handles
def clear_rendered_feat(self,):
for name, module in self.model.diffusion_model.named_modules():
if len(name.split('.')) > 1 and name.split('.')[-2] == 'transformer_blocks':
if hasattr(module, 'pose_emb_layers'):
module.rendered_feat = None
def remove_activation_hooks(
self, handles
) -> None:
for handle in handles:
handle.remove()
def init_from_ckpt(
self,
path: str,
) -> None:
if path.endswith("ckpt"):
sd = torch.load(path, map_location="cpu")["state_dict"]
elif path.endswith("safetensors"):
sd = load_safetensors(path)
else:
raise NotImplementedError
missing, unexpected = self.load_state_dict(sd, strict=False)
print(
f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys"
)
if len(missing) > 0:
print(f"Missing Keys: {missing}")
if len(unexpected) > 0:
print(f"Unexpected Keys: {unexpected}")
def _init_first_stage(self, config):
model = instantiate_from_config(config).eval()
model.train = disabled_train
for param in model.parameters():
param.requires_grad = False
self.first_stage_model = model
def get_input(self, batch):
return batch[self.input_key], batch[self.input_key + '_ref'] if self.input_key + '_ref' in batch else None, batch['pose'] if 'pose' in batch else None, batch['mask'] if "mask" in batch else None, batch['mask_ref'] if "mask_ref" in batch else None, batch['depth'] if "depth" in batch else None, batch['drop_im'] if "drop_im" in batch else 0.
@torch.no_grad()
def decode_first_stage(self, z):
z = 1.0 / self.scale_factor * z
with torch.autocast("cuda", enabled=not self.disable_first_stage_autocast):
out = self.first_stage_model.decode(z)
return out
@torch.no_grad()
def encode_first_stage(self, x):
with torch.autocast("cuda", enabled=not self.disable_first_stage_autocast):
z = self.first_stage_model.encode(x)
z = self.scale_factor * z
return z
def forward(self, x, x_rgb, xr, pose, mask, mask_ref, opacity, drop_im, batch):
loss, loss_fg, loss_bg, loss_rgb = self.loss_fn(self.model, self.denoiser, self.conditioner, x, x_rgb, xr, pose, mask, mask_ref, opacity, batch)
loss_mean = loss.mean()
loss_dict = {"loss": loss_mean.item()}
if self.rgb and self.global_step > 0:
loss_fg = (loss_fg.mean(1)*drop_im.reshape(-1)).sum()/(drop_im.sum() + 1e-12)
loss_bg = (loss_bg.mean(1)*drop_im.reshape(-1)).sum()/(drop_im.sum() + 1e-12)
loss_mean += self.loss_fg_lambda*loss_fg
loss_mean += self.loss_bg_lambda*loss_bg
loss_dict["loss_fg"] = loss_fg.item()
loss_dict["loss_bg"] = loss_bg.item()
if self.rgb_predict and loss_rgb.mean() > 0:
loss_rgb = (loss_rgb.mean(1)*drop_im.reshape(-1)).sum()/(drop_im.sum() + 1e-12)
loss_mean += self.loss_rgb_lambda*loss_rgb
loss_dict["loss_rgb"] = loss_rgb.item()
return loss_mean, loss_dict
def shared_step(self, batch: Dict) -> Any:
x, xr, pose, mask, mask_ref, opacity, drop_im = self.get_input(batch)
x_rgb = x.clone().detach()
x = self.encode_first_stage(x)
x = x.to(memory_format=torch.channels_last)
if xr is not None:
b, n = xr.shape[0], xr.shape[1]
xr = rearrange(self.encode_first_stage(rearrange(xr, "b n ... -> (b n) ...")), "(b n) ... -> b n ...", b=b, n=n)
xr = drop_im.reshape(b, 1, 1, 1, 1)*xr + (1-drop_im.reshape(b, 1, 1, 1, 1))*torch.zeros_like(xr)
batch["global_step"] = self.global_step
loss, loss_dict = self(x, x_rgb, xr, pose, mask, mask_ref, opacity, drop_im, batch)
return loss, loss_dict
def training_step(self, batch, batch_idx):
loss, loss_dict = self.shared_step(batch)
self.log_dict(
loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=False
)
self.log(
"global_step",
self.global_step,
prog_bar=True,
logger=True,
on_step=True,
on_epoch=False,
)
if self.scheduler_config is not None:
lr = self.optimizers().param_groups[0]["lr"]
self.log(
"lr_abs", lr, prog_bar=True, logger=True, on_step=True, on_epoch=False
)
return loss
def validation_step(self, batch, batch_idx):
# print("validation data", len(self.trainer.val_dataloaders))
loss, loss_dict = self.shared_step(batch)
return loss
def on_train_start(self, *args, **kwargs):
if self.sampler is None or self.loss_fn is None:
raise ValueError("Sampler and loss function need to be set for training.")
def on_train_batch_end(self, *args, **kwargs):
if self.use_ema:
self.model_ema(self.model)
def optimizer_zero_grad(self, epoch, batch_idx, optimizer):
optimizer.zero_grad(set_to_none=True)
@contextmanager
def ema_scope(self, context=None):
if self.use_ema:
self.model_ema.store(self.model.parameters())
self.model_ema.copy_to(self.model)
if context is not None:
print(f"{context}: Switched to EMA weights")
try:
yield None
finally:
if self.use_ema:
self.model_ema.restore(self.model.parameters())
if context is not None:
print(f"{context}: Restored training weights")
def instantiate_optimizer_from_config(self, params, lr, cfg):
return get_obj_from_str(cfg["target"])(
params, lr=lr, **cfg.get("params", dict())
)
def configure_optimizers(self):
lr = self.learning_rate
params = []
blocks = []
lowlrparams = []
if self.trainkeys == 'poseattn':
lowlrparams = []
for x in self.model.diffusion_model.named_parameters():
if ('pose' in x[0]):
params += [x[1]]
blocks.append(x[0].split('.pose')[0])
print(x[0])
blocks = set(blocks)
for x in self.model.diffusion_model.named_parameters():
if 'transformer_blocks' in x[0]:
for each in blocks:
if each in x[0] and not ('pose' in x[0]) and ('attn1' in x[0] or 'attn2' in x[0]):
lowlrparams += [x[1]]
elif self.trainkeys == 'pose':
for x in self.model.diffusion_model.named_parameters():
if ('pose' in x[0]):
params += [x[1]]
print(x[0])
elif self.trainkeys == 'all':
lowlrparams = []
for x in self.model.diffusion_model.named_parameters():
if ('pose' in x[0]):
params += [x[1]]
print(x[0])
else:
lowlrparams += [x[1]]
for i, embedder in enumerate(self.conditioner.embedders[:2]):
if embedder.is_trainable:
params = params + list(embedder.parameters())
if self.add_token:
if i == 0:
for name, param in embedder.transformer.get_input_embeddings().named_parameters():
param.requires_grad = True
print(name, "conditional model param")
params += [param]
else:
for name, param in embedder.model.token_embedding.named_parameters():
param.requires_grad = True
print(name, "conditional model param")
params += [param]
if len(lowlrparams) > 0:
print("different optimizer groups")
opt = self.instantiate_optimizer_from_config([{'params': params}, {'params': lowlrparams, 'lr': self.multiplier*lr}], lr, self.optimizer_config)
else:
opt = self.instantiate_optimizer_from_config(params, lr, self.optimizer_config)
if self.scheduler_config is not None:
scheduler = instantiate_from_config(self.scheduler_config)
print("Setting up LambdaLR scheduler...")
scheduler = [
{
"scheduler": LambdaLR(opt, lr_lambda=scheduler.schedule),
"interval": "step",
"frequency": 1,
}
]
return [opt], scheduler
return opt
@torch.no_grad()
def sample(
self,
cond: Dict,
uc: Union[Dict, None] = None,
batch_size: int = 16,
num_steps=None,
randn=None,
shape: Union[None, Tuple, List] = None,
return_rgb=False,
mask=None,
init_im=None,
**kwargs,
):
if randn is None:
randn = torch.randn(batch_size, *shape)
denoiser = lambda input, sigma, c: self.denoiser(
self.model, input, sigma, c, **kwargs
)
if mask is not None:
samples, rgb_list = self.sampler(denoiser, randn.to(self.device), cond, uc=uc, mask=mask, init_im=init_im, num_steps=num_steps)
else:
samples, rgb_list = self.sampler(denoiser, randn.to(self.device), cond, uc=uc, num_steps=num_steps)
if return_rgb:
return samples, rgb_list
return samples
@torch.no_grad()
def samplemulti(
self,
cond,
uc=None,
batch_size: int = 16,
num_steps=None,
randn=None,
shape: Union[None, Tuple, List] = None,
return_rgb=False,
mask=None,
init_im=None,
multikwargs=None,
):
if randn is None:
randn = torch.randn(batch_size, *shape)
samples, rgb_list = self.sampler(self.denoiser, self.model, randn.to(self.device), cond, uc=uc, num_steps=num_steps, multikwargs=multikwargs)
if return_rgb:
return samples, rgb_list
return samples
@torch.no_grad()
def log_conditionings(self, batch: Dict, n: int, refernce: bool = True) -> Dict:
"""
Defines heuristics to log different conditionings.
These can be lists of strings (text-to-image), tensors, ints, ...
"""
image_h, image_w = batch[self.input_key].shape[2:]
log = dict()
for embedder in self.conditioner.embedders:
if refernce:
check = (embedder.input_keys[0] in self.log_keys)
else:
check = (embedder.input_key in self.log_keys)
if (
(self.log_keys is None) or check
) and not self.no_cond_log:
if refernce:
x = batch[embedder.input_keys[0]][:n]
else:
x = batch[embedder.input_key][:n]
if isinstance(x, torch.Tensor):
if x.dim() == 1:
# class-conditional, convert integer to string
x = [str(x[i].item()) for i in range(x.shape[0])]
xc = log_txt_as_img((image_h, image_w), x, size=image_h // 4)
elif x.dim() == 2:
# size and crop cond and the like
x = [
"x".join([str(xx) for xx in x[i].tolist()])
for i in range(x.shape[0])
]
xc = log_txt_as_img((image_h, image_w), x, size=image_h // 20)
else:
raise NotImplementedError()
elif isinstance(x, (List, ListConfig)):
if isinstance(x[0], str):
# strings
xc = log_txt_as_img((image_h, image_w), x, size=image_h // 20)
else:
raise NotImplementedError()
else:
raise NotImplementedError()
if refernce:
log[embedder.input_keys[0]] = xc
else:
log[embedder.input_key] = xc
return log
@torch.no_grad()
def log_images(
self,
batch: Dict,
N: int = 8,
sample: bool = True,
ucg_keys: List[str] = None,
**kwargs,
) -> Dict:
log = dict()
x, xr, pose, mask, mask_ref, depth, drop_im = self.get_input(batch)
if xr is not None:
conditioner_input_keys = [e.input_keys for e in self.conditioner.embedders]
else:
conditioner_input_keys = [e.input_key for e in self.conditioner.embedders]
if ucg_keys:
assert all(map(lambda x: x in conditioner_input_keys, ucg_keys)), (
"Each defined ucg key for sampling must be in the provided conditioner input keys,"
f"but we have {ucg_keys} vs. {conditioner_input_keys}"
)
else:
ucg_keys = conditioner_input_keys
c, uc = self.conditioner.get_unconditional_conditioning(
batch,
force_uc_zero_embeddings=ucg_keys
if len(self.conditioner.embedders) > 0
else [],
)
N = min(x.shape[0], N)
x = x.to(self.device)[:N]
zr = None
if xr is not None:
xr = xr.to(self.device)[:N]
b, n = xr.shape[0], xr.shape[1]
log["reference"] = rearrange(xr, "b n ... -> (b n) ...", b=b, n=n)
zr = rearrange(self.encode_first_stage(rearrange(xr, "b n ... -> (b n) ...", b=b, n=n)), "(b n) ... -> b n ...", b=b, n=n)
log["inputs"] = x
b = x.shape[0]
if mask is not None:
log["mask"] = mask
if depth is not None:
log["depth"] = depth
z = self.encode_first_stage(x)
if uc is not None:
if xr is not None:
zr = torch.cat([torch.zeros_like(zr), zr])
drop_im = torch.cat([drop_im, drop_im])
if isinstance(pose, list):
pose = pose[:N]*2
else:
pose = torch.cat([pose[:N]] * 2)
sampling_kwargs = {'input_ref':zr}
sampling_kwargs['pose'] = pose
sampling_kwargs['mask_ref'] = None
sampling_kwargs['drop_im'] = drop_im
log["reconstructions"] = self.decode_first_stage(z)
log.update(self.log_conditionings(batch, N, refernce=True if xr is not None else False))
for k in c:
if isinstance(c[k], torch.Tensor):
if xr is not None:
c[k], uc[k] = map(lambda y: y[k][:(n+1)*N].to(self.device), (c, uc))
else:
c[k], uc[k] = map(lambda y: y[k][:N].to(self.device), (c, uc))
if sample:
with self.ema_scope("Plotting"):
samples, rgb_list = self.sample(
c, shape=z.shape[1:], uc=uc, batch_size=N, return_rgb=True, **sampling_kwargs
)
samples = self.decode_first_stage(samples)
log["samples"] = samples
if len(rgb_list) > 0:
size = int(math.sqrt(rgb_list[0].size(1)))
log["predicted_rgb"] = rgb_list[0].reshape(-1, size, size, 3).permute(0, 3, 1, 2)
return log
|