File size: 22,215 Bytes
0e83ec5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
# Copyright 2023 Bytedance Ltd. and/or its affiliates

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


from .pipeline_st_stable_diffusion import SpatioTemporalStableDiffusionPipeline
from typing import Callable, List, Optional, Union
from diffusers.schedulers import (
    DDIMScheduler,
    DPMSolverMultistepScheduler,
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
    LMSDiscreteScheduler,
    PNDMScheduler,
)
from transformers import DPTForDepthEstimation
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler
import torch
from einops import rearrange, repeat
import decord
import cv2
import random
import numpy as np
from ..models.unet_3d_condition import UNetPseudo3DConditionModel
from ..models.controlnet3d import ControlNet3DModel


class Controlnet3DStableDiffusionPipeline(SpatioTemporalStableDiffusionPipeline):
    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: UNetPseudo3DConditionModel,
        controlnet: ControlNet3DModel,
        scheduler: Union[
            DDIMScheduler,
            PNDMScheduler,
            LMSDiscreteScheduler,
            EulerDiscreteScheduler,
            EulerAncestralDiscreteScheduler,
            DPMSolverMultistepScheduler,
        ],
        annotator_model=None,

    ):
        super().__init__(vae, text_encoder, tokenizer, unet, scheduler)

        self.annotator_model = annotator_model
        self.controlnet = controlnet
        self.unet = unet
        self.vae = vae
        self.tokenizer = tokenizer
        self.text_encoder = text_encoder
        self.scheduler = scheduler
        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            controlnet=controlnet,
            scheduler=scheduler,
        )

    @staticmethod
    def get_frames_preprocess(data_path, num_frames=24, sampling_rate=1, begin_indice=0, return_np=False):
        vr = decord.VideoReader(data_path,)
        n_images = len(vr)
        fps_vid = round(vr.get_avg_fps())
        frame_indices = [begin_indice + i*sampling_rate for i in range(num_frames)]   # 随机取n帧
        

        while n_images <= frame_indices[-1]:
            # 超过视频长度,采样率减小直至不超过。
            sampling_rate -= 1
            if sampling_rate == 0:
                # NOTE 边界检查
                return None, None
            frame_indices = [i*sampling_rate for i in range(num_frames)]
        frames = vr.get_batch(frame_indices).asnumpy()

        if return_np:
            return frames, fps_vid

        frames = torch.from_numpy(frames).div(255) * 2 - 1
        frames = rearrange(frames, "f h w c -> c f h w").unsqueeze(0)
        return frames, fps_vid  

    @torch.no_grad()
    def get_canny_edge_map(self, frames, ):
        # (b f) c h w"
        # from tensor to numpy
        inputs = frames.cpu().numpy() 
        inputs = rearrange(inputs, 'f c h w -> f h w c')
        # inputs from [-1, 1] to [0, 255]
        inputs = (inputs + 1) * 127.5
        inputs = inputs.astype(np.uint8)
        lower_threshold = 100
        higher_threshold = 200
        edge_images = np.stack([cv2.Canny(inp, lower_threshold, higher_threshold) for inp in inputs])
        # from numpy to tensors
        edge_images = torch.from_numpy(edge_images).unsqueeze(1)   # f, 1, h, w
        edge_images = edge_images.div(255)*2 - 1 
        # print(torch.max(out_images), torch.min(out_images), out_images.dtype)
        return edge_images.to(dtype= self.controlnet.dtype, device=self.controlnet.device)

    @torch.no_grad()
    def get_depth_map(self, frames, height, width, return_standard_norm=False ):
        """
            frames should be like: (f c h w), you may turn b f c h w -> (b f) c h w first
        """
        h,w = height, width
        inputs = torch.nn.functional.interpolate(
            frames,
            size=(384, 384),
            mode="bicubic",
            antialias=True,
        ) 
        # 转类型和设备
        inputs = inputs.to(dtype= self.annotator_model.dtype, device=self.annotator_model.device)

        outputs = self.annotator_model(inputs)
        predicted_depths = outputs.predicted_depth

        # interpolate to original size
        predictions = torch.nn.functional.interpolate(
            predicted_depths.unsqueeze(1),
            size=(h, w),
            mode="bicubic",
        )

        # normalize output
        if return_standard_norm:
            depth_min = torch.amin(predictions, dim=[1, 2, 3], keepdim=True)
            depth_max = torch.amax(predictions, dim=[1, 2, 3], keepdim=True)
            predictions = 2.0 * (predictions - depth_min) / (depth_max - depth_min) - 1.0
        else:
            predictions -= torch.min(predictions)
            predictions /= torch.max(predictions)

        return predictions  


    @torch.no_grad()
    def get_hed_map(self, frames,):
        if isinstance(frames, torch.Tensor):
            # 输入的就是 b c h w的tensor 范围是-1~1,需要转换为0~1
            frames = (frames + 1) / 2
            #rgb转bgr
            bgr_frames = frames.clone()
            bgr_frames[:, 0, :, :] = frames[:, 2, :, :]
            bgr_frames[:, 2, :, :] = frames[:, 0, :, :]

            edge = self.annotator_model(bgr_frames) # 范围也是0~1
            return edge
        else:
            assert frames.ndim == 3
            frames = frames[:, :, ::-1].copy()
            with torch.no_grad():
                image_hed = torch.from_numpy(frames).to(next(self.annotator_model.parameters()).device, dtype=next(self.annotator_model.parameters()).dtype )
                image_hed = image_hed / 255.0
                image_hed = rearrange(image_hed, 'h w c -> 1 c h w')
                edge = self.annotator_model(image_hed)[0]
                edge = (edge.cpu().numpy() * 255.0).clip(0, 255).astype(np.uint8)
                return edge[0]
    
    @torch.no_grad()
    def get_pose_map(self, frames,):
        if isinstance(frames, torch.Tensor):
            # 输入的就是 b c h w的tensor 范围是-1~1,需要转换为0~1
            frames = (frames + 1) / 2
            np_frames = frames.cpu().numpy() * 255
            np_frames = np.array(np_frames, dtype=np.uint8)
            np_frames = rearrange(np_frames, 'f c h w-> f h w c')
            poses = np.stack([self.annotator_model(inp) for inp in np_frames])
        else:
            poses = self.annotator_model(frames)
        return poses
    
    def get_timesteps(self, num_inference_steps, strength,):
        # get the original timestep using init_timestep
        init_timestep = min(int(num_inference_steps * strength), num_inference_steps)

        t_start = max(num_inference_steps - init_timestep, 0)
        timesteps = self.scheduler.timesteps[t_start:]

        return timesteps, num_inference_steps - t_start

    @torch.no_grad()
    def __call__(
        self,
        prompt: Union[str, List[str]],
        controlnet_hint = None,
        fps_labels = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 50,
        clip_length: int = 8, # NOTE clip_length和images的帧数一致。
        guidance_scale: float = 7.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
        callback_steps: Optional[int] = 1,
        cross_attention_kwargs = None,
        video_scale: float = 0.0,
        controlnet_conditioning_scale: float = 1.0,
        fix_first_frame=True,
        first_frame_output = None ,  # 也可以允许挑好图后传入。
        first_frame_output_latent = None,
        first_frame_control_hint = None,    # 维持第一帧
        add_first_frame_by_concat = False,
        controlhint_in_uncond = False,
        init_same_noise_per_frame=False,
        init_noise_by_residual_thres=0.0,
        images=None,
        in_domain=False,    # 是否调用视频模型生成图片
        residual_control_steps=1,
        first_frame_ddim_strength=1.0,
        return_last_latent = False,
    ):
        '''
        add origin video frames to get depth maps
        '''
        
        if fix_first_frame and first_frame_output is None and first_frame_output_latent is None:
            first_frame_output = self.__call__(
                prompt=prompt,
                controlnet_hint=controlnet_hint[:,:,0,:,:] if not in_domain else controlnet_hint[:,:,0:1,:,:],
                # b c f h w
                num_inference_steps=20,
                width=width,
                height=height,
                guidance_scale=guidance_scale,
                num_images_per_prompt=1,
                generator=generator,
                fix_first_frame=False,
                controlhint_in_uncond=controlhint_in_uncond,
            ).images[0]
        

        if first_frame_output is not None:
            if isinstance(first_frame_output, list):
                first_frame_output = first_frame_output[0] 
            first_frame_output = torch.from_numpy(np.array(first_frame_output)).div(255) * 2 - 1
            first_frame_output = rearrange(first_frame_output, "h w c -> c h w").unsqueeze(0)   # FIXME 目前不允许多个batch 先设置为1
            first_frame_output = first_frame_output.to(dtype= self.vae.dtype, device=self.vae.device)

            first_frame_output_latent = self.vae.encode(first_frame_output).latent_dist.sample()
            first_frame_output_latent = first_frame_output_latent * 0.18215
        # 0. Default height and width to unet
        height = height or self.unet.config.sample_size * self.vae_scale_factor
        width = width or self.unet.config.sample_size * self.vae_scale_factor

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(prompt, height, width, callback_steps)

        # 2. Define call parameters
        batch_size = 1 if isinstance(prompt, str) else len(prompt)
        device = self._execution_device
        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 5.0

        # 3. Encode input prompt
        text_embeddings = self._encode_prompt(
            prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
        )

        # 4. Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps

        # 5. Prepare latent variables
        num_channels_latents = self.unet.in_channels
        if controlnet_hint is not None:
            if len(controlnet_hint.shape) == 5:
                clip_length = controlnet_hint.shape[2]
            else:
                clip_length = 0
            
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            clip_length,
            height,
            width,
            text_embeddings.dtype,
            device,
            generator,
            latents,
        )
        latents_dtype = latents.dtype


        if len(latents.shape) == 5 and init_same_noise_per_frame:
            latents[:,:,1:,:,:] = latents[:,:,0:1,:,:]

        if len(latents.shape) == 5 and init_noise_by_residual_thres > 0.0 and images is not None:
            
            images = images.to(device=device, dtype=latents_dtype)  # b c f h w
            image_residual = torch.abs(images[:,:,1:,:,:] - images[:,:,:-1,:,:])
            images = rearrange(images, "b c f h w -> (b f) c h w")
            
            # norm residual
            image_residual = image_residual / torch.max(image_residual)
            
            image_residual = rearrange(image_residual, "b c f h w -> (b f) c h w")
            image_residual = torch.nn.functional.interpolate(
                        image_residual, 
                        size=(latents.shape[-2], latents.shape[-1]),
                        mode='bilinear')
            image_residual = torch.mean(image_residual, dim=1)

            image_residual_mask = (image_residual > init_noise_by_residual_thres).float()
            image_residual_mask = repeat(image_residual_mask, '(b f) h w -> b f h w', b=batch_size)
            image_residual_mask = repeat(image_residual_mask, 'b f h w -> b c f h w', c=latents.shape[1])

        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 7. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            if fix_first_frame:
                if add_first_frame_by_concat:
                    if len(first_frame_output_latent.shape) == 4:
                        latents = torch.cat([first_frame_output_latent.unsqueeze(2), latents], dim=2)
                    else:
                        latents = torch.cat([first_frame_output_latent, latents], dim=2)
                    if first_frame_control_hint is not None:
                        controlnet_hint = torch.cat([first_frame_control_hint, controlnet_hint], dim=2)
                    else:
                        controlnet_hint = torch.cat([controlnet_hint[:,:,0:1 ,:,:], controlnet_hint], dim=2)
            
            if controlhint_in_uncond:
                controlnet_hint = torch.cat([controlnet_hint] * 2) if do_classifier_free_guidance else controlnet_hint
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
                if i<residual_control_steps and  len(latents.shape) == 5 and init_noise_by_residual_thres > 0.0 and images is not None :
                    if first_frame_ddim_strength < 1.0  and i == 0 :
                        # NOTE DDIM to get the first noise
                        first_frame_output_latent_DDIM = first_frame_output_latent.clone()
                        full_noise_timestep, _ = self.get_timesteps(num_inference_steps, strength=first_frame_ddim_strength)
                        latent_timestep = full_noise_timestep[:1].repeat(batch_size * num_images_per_prompt)
                        first_frame_output_latent_DDIM = self.scheduler.add_noise(first_frame_output_latent_DDIM, latents[:,:,0,:,:], latent_timestep)
                        latents[:,:,0,:,:]=first_frame_output_latent_DDIM
                    begin_frame = 1
                    for n_frame in range(begin_frame, latents.shape[2]):
                        latents[:,:, n_frame, :, :] = \
                            (latents[:,:, n_frame, :, :] - latents[:,:, n_frame-1, :, :]) \
                            * image_residual_mask[:,:, n_frame-1, :, :] + \
                            latents[:,:, n_frame-1, :, :]
                if fix_first_frame:
                    latents[:,:,0 ,:,:] = first_frame_output_latent

                latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
                if controlnet_hint is not None:
                    down_block_res_samples, mid_block_res_sample = self.controlnet(
                        latent_model_input,
                        t,
                        encoder_hidden_states=text_embeddings,
                        controlnet_cond=controlnet_hint,
                        return_dict=False,
                    )
                    down_block_res_samples = [
                    down_block_res_sample * controlnet_conditioning_scale
                    for down_block_res_sample in down_block_res_samples
                    ]
                    mid_block_res_sample *= controlnet_conditioning_scale

                    noise_pred = self.unet(
                        latent_model_input,
                        t,
                        encoder_hidden_states=text_embeddings,
                        cross_attention_kwargs=cross_attention_kwargs,
                        down_block_additional_residuals=down_block_res_samples,
                        mid_block_additional_residual=mid_block_res_sample,
                    ).sample.to(dtype=latents_dtype)
                else:
                    # predict the noise residual
                    noise_pred = self.unet(
                        latent_model_input,
                        t,
                        encoder_hidden_states=text_embeddings,
                    ).sample.to(dtype=latents_dtype)

                if video_scale > 0 and controlnet_hint is not None:
                    bsz = latents.shape[0]
                    f = latents.shape[2]
                    # 逐帧预测
                    latent_model_input_single_frame = rearrange(latent_model_input, 'b c f h w -> (b f) c h w')
                    text_embeddings_single_frame = torch.cat([text_embeddings] * f, dim=0)
                    control_maps_single_frame = rearrange(controlnet_hint, 'b c f h w -> (b f) c h w')
                    latent_model_input_single_frame = latent_model_input_single_frame.chunk(2, dim=0)[0]
                    text_embeddings_single_frame = text_embeddings_single_frame.chunk(2, dim=0)[0]
                    if controlhint_in_uncond:
                        control_maps_single_frame = control_maps_single_frame.chunk(2, dim=0)[0]

                    down_block_res_samples_single_frame, mid_block_res_sample_single_frame = self.controlnet(
                                latent_model_input_single_frame,
                                t,
                                encoder_hidden_states=text_embeddings_single_frame,
                                controlnet_cond=control_maps_single_frame,
                                return_dict=False,
                            )
                    down_block_res_samples_single_frame = [
                    down_block_res_sample_single_frame * controlnet_conditioning_scale
                    for down_block_res_sample_single_frame in down_block_res_samples_single_frame
                    ]
                    mid_block_res_sample_single_frame *= controlnet_conditioning_scale

                    noise_pred_single_frame_uncond = self.unet(
                                latent_model_input_single_frame,
                                t,
                                encoder_hidden_states = text_embeddings_single_frame,
                                down_block_additional_residuals=down_block_res_samples_single_frame,
                                mid_block_additional_residual=mid_block_res_sample_single_frame,
                                ).sample
                    noise_pred_single_frame_uncond = rearrange(noise_pred_single_frame_uncond, '(b f) c h w -> b c f h w', f=f)
                # perform guidance
                if do_classifier_free_guidance:
                    if video_scale > 0 and controlnet_hint is not None:
                        noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                        noise_pred = noise_pred_single_frame_uncond + video_scale * (
                            noise_pred_uncond - noise_pred_single_frame_uncond
                        ) + guidance_scale * (
                            noise_pred_text - noise_pred_uncond
                        )
                    else:
                        noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                        noise_pred = noise_pred_uncond + guidance_scale * (
                            noise_pred_text - noise_pred_uncond
                        )

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
                
                # call the callback, if provided
                if i == len(timesteps) - 1 or (
                    (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
                ):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        callback(i, t, latents)
        # 8. Post-processing
        image = self.decode_latents(latents)
        if add_first_frame_by_concat:
            image = image[:,1:,:,:,:]
            
        # 9. Run safety checker
        has_nsfw_concept = None
        # 10. Convert to PIL
        if output_type == "pil":
            image = self.numpy_to_pil(image)

        if not return_dict:
            return (image, has_nsfw_concept)

        if return_last_latent:
            last_latent = latents[:,:,-1,:,:]
            return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept), last_latent 
        else:
            return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)