File size: 9,371 Bytes
7c4a89c 3ea3f8a 7c4a89c 0243d32 93b7099 7c4a89c 93b7099 7c4a89c 3b130d8 7c4a89c 0243d32 7c4a89c 93b7099 7c4a89c 93b7099 7c4a89c 66659f0 7c4a89c 93b7099 7c4a89c abce843 7c4a89c 6837c13 7c4a89c 0243d32 7c4a89c 768afe4 0243d32 7c4a89c 0243d32 7c4a89c 0243d32 7c4a89c 6837c13 7c4a89c 6837c13 7c4a89c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
import spaces
import functools
import os
import shutil
import sys
import git
import gradio as gr
import numpy as np
import torch as torch
from PIL import Image
from gradio_imageslider import ImageSlider
@spaces.GPU
def process(
pipe,
path_input,
ensemble_size,
denoise_steps,
processing_res,
domain,
normal_out_vis=None,
path_out_fp32=None,
path_out_vis=None,
):
if path_out_vis is not None:
return (
[normal_out_vis, path_out_vis],
[normal_out_vis, path_out_fp32, path_out_vis],
)
input_image = Image.open(path_input)
pipe_out = pipe(
input_image,
ensemble_size=ensemble_size,
denoising_steps=denoise_steps,
processing_res=processing_res,
domain=domain,
batch_size=1 if processing_res == 0 else 0,
show_progress_bar=True,
)
depth_pred = pipe_out.depth_np
depth_colored = pipe_out.depth_colored
normal_colored = pipe_out.normal_colored
depth_16bit = (depth_pred * 65535.0).astype(np.uint16)
path_output_dir = os.path.splitext(path_input)[0] + "_output"
os.makedirs(path_output_dir, exist_ok=True)
name_base = os.path.splitext(os.path.basename(path_input))[0]
path_out_fp32 = os.path.join(path_output_dir, f"{name_base}_depth_fp32.npy")
normal_out_vis = os.path.join(path_output_dir, f"{name_base}_normal_colored.png")
path_out_vis = os.path.join(path_output_dir, f"{name_base}_depth_colored.png")
np.save(path_out_fp32, depth_pred)
Image.fromarray(normal_out_vis).save(normal_out_vis)
depth_colored.save(path_out_vis)
return (
[normal_out_vis, path_out_vis],
[normal_out_vis, path_out_fp32, path_out_vis],
)
@spaces.GPU
def run_demo_server(pipe):
process_pipe = functools.partial(process, pipe)
os.environ["GRADIO_ALLOW_FLAGGING"] = "never"
with gr.Blocks(
analytics_enabled=False,
title="Marigold Depth Estimation",
css="""
#download {
height: 118px;
}
.slider .inner {
width: 5px;
background: #FFF;
}
.viewport {
aspect-ratio: 4/3;
}
""",
) as demo:
gr.Markdown(
"""
<h1 align="center">Marigold Depth Estimation</h1>
<p align="center">
<a title="Website" href="https://marigoldmonodepth.github.io/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-website.svg">
</a>
<a title="arXiv" href="https://arxiv.org/abs/2312.02145" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-pdf.svg">
</a>
<a title="Github" href="https://github.com/prs-eth/marigold" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://img.shields.io/github/stars/prs-eth/marigold?label=GitHub%20%E2%98%85&logo=github&color=C8C" alt="badge-github-stars">
</a>
<a title="Social" href="https://twitter.com/antonobukhov1" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-social.svg" alt="social">
</a>
</p>
<p align="justify">
Marigold is the new state-of-the-art depth estimator for images in the wild.
Upload your image into the <b>left</b> side, or click any of the <b>examples</b> below.
The result will be computed and appear on the <b>right</b> in the output comparison window.
<b style="color: red;">NEW</b>: Scroll down to the new 3D printing part of the demo!
</p>
"""
)
with gr.Row():
with gr.Column():
input_image = gr.Image(
label="Input Image",
type="filepath",
)
with gr.Accordion("Advanced options", open=False):
ensemble_size = gr.Slider(
label="Ensemble size",
minimum=1,
maximum=20,
step=1,
value=1,
)
denoise_steps = gr.Slider(
label="Number of denoising steps",
minimum=1,
maximum=20,
step=1,
value=10,
)
processing_res = gr.Radio(
[
("Native", 0),
("Recommended", 768),
],
label="Processing resolution",
value=768,
)
domain = gr.Radio(
[
("indoor", "indoor"),
("outdoor", "outdoor"),
("object", "object"),
],
label="scene type",
value='indoor',
)
input_output_16bit = gr.File(
label="Predicted depth (16-bit)",
visible=False,
)
input_output_fp32 = gr.File(
label="Predicted depth (32-bit)",
visible=False,
)
input_output_vis = gr.File(
label="Predicted depth (red-near, blue-far)",
visible=False,
)
with gr.Row():
submit_btn = gr.Button(value="Compute Depth", variant="primary")
clear_btn = gr.Button(value="Clear")
with gr.Column():
output_slider = ImageSlider(
label="Predicted depth (red-near, blue-far)",
type="filepath",
show_download_button=True,
show_share_button=True,
interactive=False,
elem_classes="slider",
position=0.25,
)
files = gr.Files(
label="Depth outputs",
elem_id="download",
interactive=False,
)
blocks_settings_depth = [ensemble_size, denoise_steps, processing_res, domain]
blocks_settings = blocks_settings_depth
map_id_to_default = {b._id: b.value for b in blocks_settings}
inputs = [
input_image,
ensemble_size,
denoise_steps,
processing_res,
domain,
input_output_16bit,
input_output_fp32,
input_output_vis,
]
outputs = [
submit_btn,
input_image,
output_slider,
files,
]
def submit_depth_fn(*args):
out = list(process_pipe(*args))
out = [gr.Button(interactive=False), gr.Image(interactive=False)] + out
return out
submit_btn.click(
fn=submit_depth_fn,
inputs=inputs,
outputs=outputs,
concurrency_limit=1,
)
def clear_fn():
out = []
for b in blocks_settings:
out.append(map_id_to_default[b._id])
out += [
gr.Button(interactive=True),
gr.Button(interactive=True),
gr.Image(value=None, interactive=True),
None, None, None, None, None, None, None,
]
return out
clear_btn.click(
fn=clear_fn,
inputs=[],
outputs=blocks_settings + [
submit_btn,
input_image,
input_output_16bit,
input_output_fp32,
input_output_vis,
output_slider,
files,
],
)
demo.queue(
api_open=False,
).launch(
server_name="0.0.0.0",
server_port=7860,
)
def main():
REPO_URL = "https://github.com/lemonaddie/geowizard.git"
CHECKPOINT = "lemonaddie/Geowizard"
REPO_DIR = "geowizard"
if os.path.isdir(REPO_DIR):
shutil.rmtree(REPO_DIR)
repo = git.Repo.clone_from(REPO_URL, REPO_DIR)
sys.path.append(os.path.join(os.getcwd(), REPO_DIR))
from pipeline.depth_normal_pipeline_clip_cfg import DepthNormalEstimationPipeline
#device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
pipe = DepthNormalEstimationPipeline.from_pretrained(CHECKPOINT)
try:
import xformers
pipe.enable_xformers_memory_efficient_attention()
except:
pass # run without xformers
try:
import xformers
pipe.enable_xformers_memory_efficient_attention()
except:
pass # run without xformers
pipe = pipe.to('cuda')
run_demo_server(pipe)
if __name__ == "__main__":
main()
|