File size: 7,808 Bytes
84b1bab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
#!/usr/bin/env python
# encoding: utf-8

# The MIT License (MIT)

# Copyright (c) 2014-2016 CNRS

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

# AUTHORS
# Hervé BREDIN - http://herve.niderb.fr

from __future__ import unicode_literals

import six.moves
import numpy as np
import itertools

VITERBI_CONSTRAINT_NONE = 0
VITERBI_CONSTRAINT_FORBIDDEN = 1
VITERBI_CONSTRAINT_MANDATORY = 2


LOG_ZERO = np.log(1e-200)

# handling 'consecutive' constraints is achieved by duplicating states
# the following functions are here to help in this process


# create new transition prob. matrix accounting for duplicated states.
def _update_transition(transition, consecutive):

    # initialize with LOG_ZERO everywhere
    # except on the +1 diagonal np.log(1)
    new_n_states = np.sum(consecutive)
    new_transition = LOG_ZERO * np.ones((new_n_states, new_n_states))
    for i in range(1, new_n_states):
        new_transition[i - 1, i] = np.log(1)

    n_states = len(consecutive)
    boundary = np.hstack(([0], np.cumsum(consecutive)))
    start = boundary[:-1]
    end = boundary[1:] - 1

    for i, j in itertools.product(six.moves.range(n_states), repeat=2):
        new_transition[end[i], start[j]] = transition[i, j]

    return new_transition


# create new initial prob. matrix accounting for duplicated states.
def _update_initial(initial, consecutive):

    new_n_states = np.sum(consecutive)
    new_initial = LOG_ZERO * np.ones((new_n_states, ))

    n_states = len(consecutive)
    boundary = np.hstack(([0], np.cumsum(consecutive)))
    start = boundary[:-1]

    for i in range(n_states):
        new_initial[start[i]] = initial[i]

    return new_initial


# create new emission prob. matrix accounting for duplicated states.
def _update_emission(emission, consecutive):

    return np.vstack(
        np.tile(e, (c, 1))  # duplicate emission probabilities c times
        for e, c in six.moves.zip(emission.T, consecutive)
    ).T


# create new constraint matrix accounting for duplicated states
def _update_constraint(constraint, consecutive):

    return np.vstack(
        np.tile(e, (c, 1))  # duplicate constraint probabilities c times
        for e, c in six.moves.zip(constraint.T, consecutive)
    ).T


# convert sequence of duplicated states back to sequence of original states.
def _update_states(states, consecutive):

    boundary = np.hstack(([0], np.cumsum(consecutive)))
    start = boundary[:-1]
    end = boundary[1:]

    new_states = np.empty(states.shape)

    for i, (s, e) in enumerate(six.moves.zip(start, end)):
        new_states[np.where((s <= states) & (states < e))] = i

    return new_states


def viterbi_decoding(emission, transition,
                     initial=None, consecutive=None, constraint=None):
    """(Constrained) Viterbi decoding

    Parameters
    ----------
    emission : array of shape (n_samples, n_states)
        E[t, i] is the emission log-probabilities of sample t at state i.
    transition : array of shape (n_states, n_states)
        T[i, j] is the transition log-probabilities from state i to state j.
    initial : optional, array of shape (n_states, )
        I[i] is the initial log-probabilities of state i.
        Defaults to equal log-probabilities.
    consecutive : optional, int or int array of shape (n_states, )
        C[i] is a the minimum-consecutive-states constraint for state i.
        C[i] = 1 is equivalent to no constraint (default).
    constraint : optional, array of shape (n_samples, n_states)
        K[t, i] = 1 forbids state i at time t.
        K[t, i] = 2 forces state i at time t.
        Use K[t, i] = 0 for no constraint (default).

    Returns
    -------
    states : array of shape (n_samples, )
        Most probable state sequence

    """

    # ~~ INITIALIZATION ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    T, k = emission.shape  # number of observations x number of states

    # no minimum-consecutive-states constraints
    if consecutive is None:
        consecutive = np.ones((k, ), dtype=int)

    # same value for all states
    elif isinstance(consecutive, int):
        consecutive = consecutive * np.ones((k, ), dtype=int)

    # (potentially) different values per state
    else:
        consecutive = np.array(consecutive, dtype=int).reshape((k, ))

    # at least one sample
    consecutive = np.maximum(1, consecutive)

    # balance initial probabilities when they are not provided
    if initial is None:
        initial = np.log(np.ones((k, )) / k)

    # no constraint?
    if constraint is None:
        constraint = VITERBI_CONSTRAINT_NONE * np.ones((T, k))

    # artificially create new states to account for 'consecutive' constraints
    emission = _update_emission(emission, consecutive)
    transition = _update_transition(transition, consecutive)
    initial = _update_initial(initial, consecutive)
    constraint = _update_constraint(constraint, consecutive)
    T, K = emission.shape  # number of observations x number of new states
    states = np.arange(K)  # states 0 to K-1

    # set emission probability to zero for forbidden states
    emission[
        np.where(constraint == VITERBI_CONSTRAINT_FORBIDDEN)] = LOG_ZERO

    # set emission probability to zero for all states but the mandatory one
    for t, k in six.moves.zip(
        *np.where(constraint == VITERBI_CONSTRAINT_MANDATORY)
    ):
        emission[t, states != k] = LOG_ZERO

    # ~~ FORWARD PASS ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    V = np.empty((T, K))                # V[t, k] is the probability of the
    V[0, :] = emission[0, :] + initial  # most probable state sequence for the
                                        # first t observations that has k as
                                        # its final state.

    P = np.empty((T, K), dtype=int)  # P[t, k] remembers which state was used
    P[0, :] = states                 # to get from time t-1 to time t at
                                     # state k

    for t in range(1, T):

        # tmp[k, k'] is the probability of the most probable path
        # leading to state k at time t - 1, plus the probability of
        # transitioning from state k to state k' (at time t)
        tmp = (V[t - 1, :] + transition.T).T

        # optimal path to state k at t comes from state P[t, k] at t - 1
        # (find among all possible states at this time t)
        P[t, :] = np.argmax(tmp, axis=0)

        # update V for time t
        V[t, :] = emission[t, :] + tmp[P[t, :], states]

    # ~~ BACK-TRACKING ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    X = np.empty((T,), dtype=int)
    X[-1] = np.argmax(V[-1, :])
    for t in range(1, T):
        X[-(t + 1)] = P[-t, X[-t]]

    # ~~ CONVERT BACK TO ORIGINAL STATES

    return _update_states(X, consecutive)