Spaces:
Runtime error
Runtime error
File size: 8,457 Bytes
4e39fb3 7b920eb af5a863 7b920eb 4e39fb3 7b920eb 4e39fb3 7b920eb af5a863 7b920eb af5a863 7b920eb 4e39fb3 7b920eb 4e39fb3 7b920eb 4e39fb3 7b920eb 4e39fb3 7b920eb 4e39fb3 7b920eb 4e39fb3 7b920eb 4e39fb3 7b920eb 4e39fb3 7b920eb 4e39fb3 7b920eb 4e39fb3 7b920eb 4e39fb3 7b920eb 4e39fb3 7b920eb 4e39fb3 af5a863 4e39fb3 7b920eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import numpy as np
from ultralytics import YOLO
import cv2
import cvzone
import math
from sort import *
import datetime
import geocoder
import gradio as gr
#i want to take co ordinates in lat long of this device
# def get_coordinates():
# g = geocoder.ip('me')
# if g.latlng:
# return {'lat': str(g.latlng[0]), 'long': str(g.latlng[1])}
# else:
# return None
# currentCoordinates = get_coordinates()
# if currentCoordinates:
# print(currentCoordinates)
# else:
# print("Unable to get device coordinates.")
#calculate distance b/w two coordinates
def distance_calculations(stationFromCoordinates, stationToCoordinates):
stationFromCoordinates = {'lat': ' 28.98', 'long': '77.7064'}
stationToCoordinates = {'lat': '28.66', 'long': '77.22'}
lat1 = float(stationFromCoordinates['lat'])
lon1 = float(stationFromCoordinates['long'])
lat2 = float(stationToCoordinates['lat'])
lon2 = float(stationToCoordinates['long'])
R = 6371
dlat = math.radians(lat2 - lat1)
dlon = math.radians(lon2 - lon1)
a = math.sin(dlat / 2) * math.sin(dlat / 2) + math.cos(math.radians(lat1)) * math.cos(math.radians(lat2)) * math.sin(dlon / 2) * math.sin(dlon / 2)
c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a))
distance = R * c
return distance
print(distance_calculations({'lat': ' 28.98', 'long': '77.7'}, {'lat': '28.66', 'long': '77.22'}))
totalFare=0
pricePerKm=1.5
def distanceCalculations(inBetweenDepaturePoints,inBetweenOnBoardingPoints):
print(inBetweenDepaturePoints,inBetweenOnBoardingPoints ,'inbetween points')
return 3
def fareCalculations():
global totalFare
print(dict)
index=0
for i in dict.values():
print(len(i))
inBetweenDepaturePoints=[]
inBetweenOnBoardingPoints=[]
if(len(i)>3):
print(True)
#index of the dict
print(index,"index")
print(i[0],i[1],i[2],"values of the dict","key of the dict")
if i[0]==True and i[1]==False:
inBetweenDepaturePoints.append(i[2])
if i[0]==False and i[1]==True:
inBetweenOnBoardingPoints.append(i[2])
fare=distanceCalculations(inBetweenDepaturePoints,inBetweenOnBoardingPoints)*pricePerKm
print(fare,'fare')
totalFare+=fare
index+=1
print(totalFare)
cap = cv2.VideoCapture('TrialFootage.mp4')
model = YOLO("./Yolo-Weights/yolov8n.pt")
stationFrom='Meerut'
stationFromCoordinates={"lat":"12.12.54.4","long":"44.36.09"} # Meerut
stationToCoordinates={'lat':'54.45.56',"long":'45.45.45'}
currentCoordinates={'lat': '28.98', 'long': '77.7064'}
stationTo='Delhi'
reachedDestination=False
ListPeople = []
dict = {}
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
print(f"Video Resolution: {width}x{height}")
classNames = ["person", "bicycle", "car", "motorbike", "aeroplane", "bus", "train", "truck", "boat",
"traffic light", "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat",
"dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella",
"handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat",
"baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup",
"fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli",
"carrot", "hot dog", "pizza", "donut", "cake", "chair", "sofa", "pottedplant", "bed",
"diningtable", "toilet", "tvmonitor", "laptop", "mouse", "remote", "keyboard", "cell phone",
"microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors",
"teddy bear", "hair drier", "toothbrush"
]
# Tracking
tracker = Sort(max_age=20, min_hits=3, iou_threshold=0.3)
yelloLine = [270, 0, 270, 600]
RedLine = [173, 0, 173, 600]
totalCountUp = []
#mask=cv2.imread('mask.jpg')
entry_count = 0
while True:
success, img = cap.read()
# imgRegion=cv2.bitwise_and(img,mask)
results = model(img, stream=True)
detections = np.empty((0, 5))
for r in results:
boxes = r.boxes
for box in boxes:
# Bounding Box
x1, y1, x2, y2 = box.xyxy[0]
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
# cv2.rectangle(img,(x1,y1),(x2,y2),(255,0,255),3)
w, h = x2 - x1, y2 - y1
# Confidence
conf = math.ceil((box.conf[0] * 100)) / 100
# Class Name
cls = int(box.cls[0])
currentClass = classNames[cls]
if currentClass == "person" and conf > 0.3:
# cvzone.putTextRect(img, f'{currentClass} {conf}', (max(0, x1), max(35, y1)),
# scale=0.6, thickness=1, offset=3)
# cvzone.cornerRect(img, (x1, y1, w, h), l=9, rt=5)
currentArray = np.array([x1, y1, x2, y2, conf])
detections = np.vstack((detections, currentArray))
resultsTracker = tracker.update(detections)
cv2.line(img, (yelloLine[0], yelloLine[1]), (yelloLine[2], yelloLine[3]), (0, 0, 255), 5)
cv2.line(img, (RedLine[0], RedLine[1]), (RedLine[2], RedLine[3]), (0, 255, 200), 5)
for result in resultsTracker:
x1, y1, x2, y2, id = result
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
print(result)
w, h = x2 - x1, y2 - y1
cvzone.cornerRect(img, (x1, y1, w, h), l=9, rt=2, colorR=(255, 0, 255))
cvzone.putTextRect(img, f' {int(id)}', (max(0, x1), max(35, y1)),
scale=2, thickness=3, offset=10)
cx, cy = x1 + w // 2, y1 + h // 2
cv2.circle(img, (cx, cy), 5, (255, 0, 255), cv2.FILLED)
if yelloLine[0] - 20 < cx < yelloLine[2] + 20:
if totalCountUp.count(id) == 0:
totalCountUp.append(id)
dict[id] = [False]
cv2.line(img, (yelloLine[0], yelloLine[1]), (yelloLine[2], yelloLine[3]), (0, 0, 255), 5)
elif totalCountUp.count(id) == 1:
if (dict[id].count(False) < 1):
dict[id].append(False)
cv2.line(img, (yelloLine[0], yelloLine[1]), (yelloLine[2], yelloLine[3]), (0, 0, 255), 5)
if RedLine[0] - 20 < cx < RedLine[2] + 30:
if totalCountUp.count(id) == 0:
totalCountUp.append(id)
dict[id] = [True]
dict[id].append(currentCoordinates)
#adding timestamp
current_time = datetime.datetime.now()
dict[id].append(current_time)
cv2.line(img, (RedLine[0], RedLine[1]), (RedLine[2], RedLine[3]), (0, 255, 200), 5)
elif totalCountUp.count(id) == 1:
if (dict[id].count(True) < 1):
dict[id].append(True)
dict[id].append(currentCoordinates)
#adding timestamp
current_time = datetime.datetime.now()
dict[id].append(current_time)
cv2.line(img, (RedLine[0], RedLine[1]), (RedLine[2], RedLine[3]), (0, 255, 200), 5)
print(totalCountUp)
entry_count=0
for i in dict.values():
if (len(i) >= 2):
if i[0] == True and i[1] == False:
print('in true/False')
if entry_count > 0:
entry_count -= 1
if i[0] == False and i[1] == True:
print('in /False/True')
entry_count += 1
# print('count is ', entry_count)
# print(dict)
cv2.putText(img, str(entry_count), (110, 245), cv2.FONT_HERSHEY_PLAIN, 5, (50, 50, 230), 7)
print('count is ', entry_count)
print(dict)
image=gr.inputs.Image(frame)
# Create the Gradio interface
interface = gr.Interface(
outputs=image,
)
# cv2.waitKey(1)
print(entry_count)
# if currentCoordinates==stationToCoordinates:
# reachedDestination=True
# fareCalculations()
# dict=[]
# break
if entry_count>2:
print('reached destination')
fareCalculations()
break
|