Spaces:
Runtime error
Runtime error
File size: 1,520 Bytes
4406fb8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
import streamlit as st
import pandas as pd
import numpy as np
import pickle
import json
# Load All Files
with open('model_bagging.pkl', 'rb') as file_1:
bagging_model_final = pickle.load(file_1)
with open('model_scaler-2.pkl', 'rb') as file_2:
model_scaler = pickle.load(file_2)
with open('list_num_cols-2.txt', 'r') as file_3:
list_num_cols = json.load(file_3)
def run():
with st.form(key='from_patient'):
age = st.number_input('Age', min_value=0, max_value=100, value=0, step=1, help='Usia Pasien')
time = st.number_input('Time', min_value=0, max_value=300, value=0, step=1)
serum_creatinine = st.number_input('Serum Creatinine', min_value=0.0, max_value=20.0, value=0.0, step=0.5)
ejection_fraction = st.slider('Ejection Fraction', min_value=0, max_value=100, value=0, step=1)
serum_sodium = st.number_input('Serum Sodium', min_value=0, max_value=150, value=0)
st.markdown('---')
submitted = st.form_submit_button('Predict')
data_inf = {
'Age': age,
'Time': time,
'Serum Creatinine': serum_creatinine,
'Ejection Fraction': ejection_fraction,
'Serum Sodium': serum_sodium
}
data_inf = pd.DataFrame([data_inf])
st.dataframe(data_inf)
if submitted:
# Feature Scaling
data_inf_scaled = model_scaler.transform(data_inf)
# Predict using Bagging Classifier
y_pred_inf = bagging_model_final.predict(data_inf_scaled)
st.write('# Death Event : ', str(int(y_pred_inf)))
if __name__=='__main__':
run() |