Spaces:
Build error
Build error
File size: 12,351 Bytes
07e35cb 806a3a7 5a486d6 5d6a57f 5a486d6 04a4c7d 5a486d6 4bce9fa 5a486d6 04a4c7d 5a486d6 5d6a57f 5a486d6 c1569cf 5a486d6 04a4c7d 5a486d6 5d6a57f 5a486d6 07e35cb 5a486d6 d82b3bc dbf83dd 07e35cb dbf83dd 07e35cb dbf83dd 371a124 07e35cb 32df02b 07e35cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
import spaces
import gradio as gr
import os
from pathlib import Path
import sys
import torch
from PIL import Image, ImageOps
from utils_ootd import get_mask_location
PROJECT_ROOT = Path(__file__).absolute().parents[1].absolute()
sys.path.insert(0, str(PROJECT_ROOT))
from preprocess.openpose.run_openpose import OpenPose
from preprocess.humanparsing.run_parsing import Parsing
from ootd.inference_ootd_hd import OOTDiffusionHD
from ootd.inference_ootd_dc import OOTDiffusionDC
openpose_model_hd = OpenPose(0)
parsing_model_hd = Parsing(0)
ootd_model_hd = OOTDiffusionHD(0)
openpose_model_dc = OpenPose(1)
parsing_model_dc = Parsing(1)
ootd_model_dc = OOTDiffusionDC(1)
category_dict = ['upperbody', 'lowerbody', 'dress']
category_dict_utils = ['upper_body', 'lower_body', 'dresses']
example_path = os.path.join(os.path.dirname(__file__), 'examples')
model_hd = os.path.join(example_path, 'model/model_1.png')
garment_hd = os.path.join(example_path, 'garment/03244_00.jpg')
model_dc = os.path.join(example_path, 'model/model_8.png')
garment_dc = os.path.join(example_path, 'garment/048554_1.jpg')
@spaces.GPU
def process_hd(vton_img, garm_img, n_samples, n_steps, image_scale, seed):
model_type = 'hd'
category = 0 # 0:upperbody; 1:lowerbody; 2:dress
with torch.no_grad():
openpose_model_hd.preprocessor.body_estimation.model.to('cuda')
ootd_model_hd.pipe.to('cuda')
ootd_model_hd.image_encoder.to('cuda')
ootd_model_hd.text_encoder.to('cuda')
garm_img = Image.open(garm_img).resize((768, 1024))
vton_img = Image.open(vton_img).resize((768, 1024))
keypoints = openpose_model_hd(vton_img.resize((384, 512)))
model_parse, _ = parsing_model_hd(vton_img.resize((384, 512)))
mask, mask_gray = get_mask_location(model_type, category_dict_utils[category], model_parse, keypoints)
mask = mask.resize((768, 1024), Image.NEAREST)
mask_gray = mask_gray.resize((768, 1024), Image.NEAREST)
masked_vton_img = Image.composite(mask_gray, vton_img, mask)
images = ootd_model_hd(
model_type=model_type,
category=category_dict[category],
image_garm=garm_img,
image_vton=masked_vton_img,
mask=mask,
image_ori=vton_img,
num_samples=n_samples,
num_steps=n_steps,
image_scale=image_scale,
seed=seed,
)
return images
@spaces.GPU
def process_dc(vton_img, garm_img, category, n_samples, n_steps, image_scale, seed):
model_type = 'dc'
if category == 'Upper-body':
category = 0
elif category == 'Lower-body':
category = 1
else:
category =2
with torch.no_grad():
openpose_model_dc.preprocessor.body_estimation.model.to('cuda')
ootd_model_dc.pipe.to('cuda')
ootd_model_dc.image_encoder.to('cuda')
ootd_model_dc.text_encoder.to('cuda')
garm_img = Image.open(garm_img).resize((768, 1024))
vton_img = Image.open(vton_img).resize((768, 1024))
keypoints = openpose_model_dc(vton_img.resize((384, 512)))
model_parse, _ = parsing_model_dc(vton_img.resize((384, 512)))
mask, mask_gray = get_mask_location(model_type, category_dict_utils[category], model_parse, keypoints)
mask = mask.resize((768, 1024), Image.NEAREST)
mask_gray = mask_gray.resize((768, 1024), Image.NEAREST)
masked_vton_img = Image.composite(mask_gray, vton_img, mask)
images = ootd_model_dc(
model_type=model_type,
category=category_dict[category],
image_garm=garm_img,
image_vton=masked_vton_img,
mask=mask,
image_ori=vton_img,
num_samples=n_samples,
num_steps=n_steps,
image_scale=image_scale,
seed=seed,
)
return images
block = gr.Blocks().queue()
with block:
with gr.Row(visible=False):
with gr.Column():
vton_img = gr.Image(label="Model", sources='upload', type="filepath", height=384, value=model_hd)
example = gr.Examples(
inputs=vton_img,
examples_per_page=14,
examples=[
os.path.join(example_path, 'model/model_1.png'),
os.path.join(example_path, 'model/model_2.png'),
os.path.join(example_path, 'model/model_3.png'),
os.path.join(example_path, 'model/model_4.png'),
os.path.join(example_path, 'model/model_5.png'),
os.path.join(example_path, 'model/model_6.png'),
os.path.join(example_path, 'model/model_7.png'),
os.path.join(example_path, 'model/01008_00.jpg'),
os.path.join(example_path, 'model/07966_00.jpg'),
os.path.join(example_path, 'model/05997_00.jpg'),
os.path.join(example_path, 'model/02849_00.jpg'),
os.path.join(example_path, 'model/14627_00.jpg'),
os.path.join(example_path, 'model/09597_00.jpg'),
os.path.join(example_path, 'model/01861_00.jpg'),
])
with gr.Column():
garm_img = gr.Image(label="Garment", sources='upload', type="filepath", height=384, value=garment_hd)
example = gr.Examples(
inputs=garm_img,
examples_per_page=14,
examples=[
os.path.join(example_path, 'garment/03244_00.jpg'),
os.path.join(example_path, 'garment/00126_00.jpg'),
os.path.join(example_path, 'garment/03032_00.jpg'),
os.path.join(example_path, 'garment/06123_00.jpg'),
os.path.join(example_path, 'garment/02305_00.jpg'),
os.path.join(example_path, 'garment/00055_00.jpg'),
os.path.join(example_path, 'garment/00470_00.jpg'),
os.path.join(example_path, 'garment/02015_00.jpg'),
os.path.join(example_path, 'garment/10297_00.jpg'),
os.path.join(example_path, 'garment/07382_00.jpg'),
os.path.join(example_path, 'garment/07764_00.jpg'),
os.path.join(example_path, 'garment/00151_00.jpg'),
os.path.join(example_path, 'garment/12562_00.jpg'),
os.path.join(example_path, 'garment/04825_00.jpg'),
])
with gr.Column():
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", preview=True, scale=1)
with gr.Column(visible=False):
run_button = gr.Button(value="Run")
n_samples = gr.Slider(label="Images", minimum=1, maximum=4, value=1, step=1)
n_steps = gr.Slider(label="Steps", minimum=20, maximum=40, value=20, step=1)
# scale = gr.Slider(label="Scale", minimum=1.0, maximum=12.0, value=5.0, step=0.1)
image_scale = gr.Slider(label="Guidance scale", minimum=1.0, maximum=5.0, value=2.0, step=0.1)
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=-1)
ips = [vton_img, garm_img, n_samples, n_steps, image_scale, seed]
run_button.click(fn=process_hd, inputs=ips, outputs=[result_gallery])
with gr.Row(visible=False):
gr.Markdown("## Full-body")
with gr.Row(visible=False):
with gr.Column():
vton_img_dc = gr.Image(label="Model", sources='upload', type="filepath", height=384, value=model_dc)
example = gr.Examples(
label="Examples (upper-body/lower-body)",
inputs=vton_img_dc,
examples_per_page=7,
examples=[
os.path.join(example_path, 'model/model_8.png'),
os.path.join(example_path, 'model/049447_0.jpg'),
os.path.join(example_path, 'model/049713_0.jpg'),
os.path.join(example_path, 'model/051482_0.jpg'),
os.path.join(example_path, 'model/051918_0.jpg'),
os.path.join(example_path, 'model/051962_0.jpg'),
os.path.join(example_path, 'model/049205_0.jpg'),
])
example = gr.Examples(
label="Examples (dress)",
inputs=vton_img_dc,
examples_per_page=7,
examples=[
os.path.join(example_path, 'model/model_9.png'),
os.path.join(example_path, 'model/052767_0.jpg'),
os.path.join(example_path, 'model/052472_0.jpg'),
os.path.join(example_path, 'model/053514_0.jpg'),
os.path.join(example_path, 'model/053228_0.jpg'),
os.path.join(example_path, 'model/052964_0.jpg'),
os.path.join(example_path, 'model/053700_0.jpg'),
])
with gr.Column():
garm_img_dc = gr.Image(label="Garment", sources='upload', type="filepath", height=384, value=garment_dc)
category_dc = gr.Dropdown(label="Garment category (important option!!!)", choices=["Upper-body", "Lower-body", "Dress"], value="Upper-body")
example = gr.Examples(
label="Examples (upper-body)",
inputs=garm_img_dc,
examples_per_page=7,
examples=[
os.path.join(example_path, 'garment/048554_1.jpg'),
os.path.join(example_path, 'garment/049920_1.jpg'),
os.path.join(example_path, 'garment/049965_1.jpg'),
os.path.join(example_path, 'garment/049949_1.jpg'),
os.path.join(example_path, 'garment/050181_1.jpg'),
os.path.join(example_path, 'garment/049805_1.jpg'),
os.path.join(example_path, 'garment/050105_1.jpg'),
])
example = gr.Examples(
label="Examples (lower-body)",
inputs=garm_img_dc,
examples_per_page=7,
examples=[
os.path.join(example_path, 'garment/051827_1.jpg'),
os.path.join(example_path, 'garment/051946_1.jpg'),
os.path.join(example_path, 'garment/051473_1.jpg'),
os.path.join(example_path, 'garment/051515_1.jpg'),
os.path.join(example_path, 'garment/051517_1.jpg'),
os.path.join(example_path, 'garment/051988_1.jpg'),
os.path.join(example_path, 'garment/051412_1.jpg'),
])
example = gr.Examples(
label="Examples (dress)",
inputs=garm_img_dc,
examples_per_page=7,
examples=[
os.path.join(example_path, 'garment/053290_1.jpg'),
os.path.join(example_path, 'garment/053744_1.jpg'),
os.path.join(example_path, 'garment/053742_1.jpg'),
os.path.join(example_path, 'garment/053786_1.jpg'),
os.path.join(example_path, 'garment/053790_1.jpg'),
os.path.join(example_path, 'garment/053319_1.jpg'),
os.path.join(example_path, 'garment/052234_1.jpg'),
])
with gr.Column():
result_gallery_dc = gr.Gallery(label='Output', show_label=False, elem_id="gallery", preview=True, scale=1)
with gr.Column(visible=False):
run_button_dc = gr.Button(value="Run")
n_samples_dc = gr.Slider(label="Images", minimum=1, maximum=4, value=1, step=1)
n_steps_dc = gr.Slider(label="Steps", minimum=20, maximum=40, value=20, step=1)
# scale_dc = gr.Slider(label="Scale", minimum=1.0, maximum=12.0, value=5.0, step=0.1)
image_scale_dc = gr.Slider(label="Guidance scale", minimum=1.0, maximum=5.0, value=2.0, step=0.1)
seed_dc = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=-1)
ips_dc = [vton_img_dc, garm_img_dc, category_dc, n_samples_dc, n_steps_dc, image_scale_dc, seed_dc]
run_button_dc.click(fn=process_dc, inputs=ips_dc, outputs=[result_gallery_dc])
block.launch()
|