File size: 1,444 Bytes
eff32f1
5aaeb9a
 
 
 
 
edcde04
 
5aaeb9a
 
 
 
 
 
 
 
33ccd55
 
5aaeb9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0b0602
5aaeb9a
 
 
 
 
 
eff32f1
c0e49dc
 
5aaeb9a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import streamlit as st
import torch
import numpy as np
from transformers import TrainingArguments, \
                         Trainer, AutoTokenizer, DataCollatorWithPadding, \
                         AutoModelForSequenceClassification 
categories = ['biology', 'computer science', 'economics', 'electrics', 'finance',
               'math', 'physics', 'statistics']
def print_probs(logits):
  probs = torch.nn.functional.softmax(logits, dim=0).numpy()*100
  ans = list(zip(probs,labels))
  ans.sort(reverse=True)
  sum = 0
  i = 0
  while sum <= 95:
    prob, idx = ans[i]
    text = categories[idx] + ": "+ str(np.round(prob,1))
    st.markdown(text)
    sum+=prob
    i+=1

def make_prediction(text):
  tokenized_text = tokenizer(text, return_tensors='pt')
  with torch.no_grad():
    pred_logits = model(**tokenized_text).logits
  st.markdown("Predictions:")
  print_probs(pred_logits[0])



tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")

model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased", num_labels=8)
model_name = "trained_model2"
model_path = model_name + '.zip'
model.load_state_dict(
    torch.load(
        model_path
    )
)

st.markdown("##Hello, people!")
st.markdown("<img src='https://centroderecursosmarista.org/wp-content/uploads/2013/05/arvix.jpg'>", unsafe_allow_html=True)
text = st.text_area("Введите описание статьи")
make_prediction(text)