File size: 13,070 Bytes
6ed1db6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
import torch
from typing import List, Union, Optional, Dict, Any, Callable
from diffusers.models.attention_processor import Attention, F
from .lora_controller import enable_lora


def attn_forward(
    attn: Attention,
    hidden_states: torch.FloatTensor,
    encoder_hidden_states: torch.FloatTensor = None,
    condition_latents: torch.FloatTensor = None,
    attention_mask: Optional[torch.FloatTensor] = None,
    image_rotary_emb: Optional[torch.Tensor] = None,
    cond_rotary_emb: Optional[torch.Tensor] = None,
    model_config: Optional[Dict[str, Any]] = {},
) -> torch.FloatTensor:
    batch_size, _, _ = (
        hidden_states.shape
        if encoder_hidden_states is None
        else encoder_hidden_states.shape
    )

    with enable_lora(
        (attn.to_q, attn.to_k, attn.to_v), model_config.get("latent_lora", False)
    ):
        # `sample` projections.
        query = attn.to_q(hidden_states)
        key = attn.to_k(hidden_states)
        value = attn.to_v(hidden_states)

    inner_dim = key.shape[-1]
    head_dim = inner_dim // attn.heads

    query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
    key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
    value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

    if attn.norm_q is not None:
        query = attn.norm_q(query)
    if attn.norm_k is not None:
        key = attn.norm_k(key)

    # the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
    if encoder_hidden_states is not None:
        # `context` projections.
        encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
        encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
        encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)

        encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
            batch_size, -1, attn.heads, head_dim
        ).transpose(1, 2)
        encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
            batch_size, -1, attn.heads, head_dim
        ).transpose(1, 2)
        encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
            batch_size, -1, attn.heads, head_dim
        ).transpose(1, 2)

        if attn.norm_added_q is not None:
            encoder_hidden_states_query_proj = attn.norm_added_q(
                encoder_hidden_states_query_proj
            )
        if attn.norm_added_k is not None:
            encoder_hidden_states_key_proj = attn.norm_added_k(
                encoder_hidden_states_key_proj
            )

        # attention
        query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
        key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
        value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)

    if image_rotary_emb is not None:
        from diffusers.models.embeddings import apply_rotary_emb

        query = apply_rotary_emb(query, image_rotary_emb)
        key = apply_rotary_emb(key, image_rotary_emb)

    if condition_latents is not None:
        cond_query = attn.to_q(condition_latents)
        cond_key = attn.to_k(condition_latents)
        cond_value = attn.to_v(condition_latents)

        cond_query = cond_query.view(batch_size, -1, attn.heads, head_dim).transpose(
            1, 2
        )
        cond_key = cond_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        cond_value = cond_value.view(batch_size, -1, attn.heads, head_dim).transpose(
            1, 2
        )
        if attn.norm_q is not None:
            cond_query = attn.norm_q(cond_query)
        if attn.norm_k is not None:
            cond_key = attn.norm_k(cond_key)

    if cond_rotary_emb is not None:
        cond_query = apply_rotary_emb(cond_query, cond_rotary_emb)
        cond_key = apply_rotary_emb(cond_key, cond_rotary_emb)

    if condition_latents is not None:
        query = torch.cat([query, cond_query], dim=2)
        key = torch.cat([key, cond_key], dim=2)
        value = torch.cat([value, cond_value], dim=2)

    if not model_config.get("union_cond_attn", True):
        # If we don't want to use the union condition attention, we need to mask the attention
        # between the hidden states and the condition latents
        attention_mask = torch.ones(
            query.shape[2], key.shape[2], device=query.device, dtype=torch.bool
        )
        condition_n = cond_query.shape[2]
        attention_mask[-condition_n:, :-condition_n] = False
        attention_mask[:-condition_n, -condition_n:] = False
    if hasattr(attn, "c_factor"):
        attention_mask = torch.zeros(
            query.shape[2], key.shape[2], device=query.device, dtype=query.dtype
        )
        condition_n = cond_query.shape[2]
        bias = torch.log(attn.c_factor[0])
        attention_mask[-condition_n:, :-condition_n] = bias
        attention_mask[:-condition_n, -condition_n:] = bias
    hidden_states = F.scaled_dot_product_attention(
        query, key, value, dropout_p=0.0, is_causal=False, attn_mask=attention_mask
    )
    hidden_states = hidden_states.transpose(1, 2).reshape(
        batch_size, -1, attn.heads * head_dim
    )
    hidden_states = hidden_states.to(query.dtype)

    if encoder_hidden_states is not None:
        if condition_latents is not None:
            encoder_hidden_states, hidden_states, condition_latents = (
                hidden_states[:, : encoder_hidden_states.shape[1]],
                hidden_states[
                    :, encoder_hidden_states.shape[1] : -condition_latents.shape[1]
                ],
                hidden_states[:, -condition_latents.shape[1] :],
            )
        else:
            encoder_hidden_states, hidden_states = (
                hidden_states[:, : encoder_hidden_states.shape[1]],
                hidden_states[:, encoder_hidden_states.shape[1] :],
            )

        with enable_lora((attn.to_out[0],), model_config.get("latent_lora", False)):
            # linear proj
            hidden_states = attn.to_out[0](hidden_states)
            # dropout
            hidden_states = attn.to_out[1](hidden_states)
        encoder_hidden_states = attn.to_add_out(encoder_hidden_states)

        if condition_latents is not None:
            condition_latents = attn.to_out[0](condition_latents)
            condition_latents = attn.to_out[1](condition_latents)

        return (
            (hidden_states, encoder_hidden_states, condition_latents)
            if condition_latents is not None
            else (hidden_states, encoder_hidden_states)
        )
    elif condition_latents is not None:
        # if there are condition_latents, we need to separate the hidden_states and the condition_latents
        hidden_states, condition_latents = (
            hidden_states[:, : -condition_latents.shape[1]],
            hidden_states[:, -condition_latents.shape[1] :],
        )
        return hidden_states, condition_latents
    else:
        return hidden_states


def block_forward(
    self,
    hidden_states: torch.FloatTensor,
    encoder_hidden_states: torch.FloatTensor,
    condition_latents: torch.FloatTensor,
    temb: torch.FloatTensor,
    cond_temb: torch.FloatTensor,
    cond_rotary_emb=None,
    image_rotary_emb=None,
    model_config: Optional[Dict[str, Any]] = {},
):
    use_cond = condition_latents is not None
    with enable_lora((self.norm1.linear,), model_config.get("latent_lora", False)):
        norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
            hidden_states, emb=temb
        )

    norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = (
        self.norm1_context(encoder_hidden_states, emb=temb)
    )

    if use_cond:
        (
            norm_condition_latents,
            cond_gate_msa,
            cond_shift_mlp,
            cond_scale_mlp,
            cond_gate_mlp,
        ) = self.norm1(condition_latents, emb=cond_temb)

    # Attention.
    result = attn_forward(
        self.attn,
        model_config=model_config,
        hidden_states=norm_hidden_states,
        encoder_hidden_states=norm_encoder_hidden_states,
        condition_latents=norm_condition_latents if use_cond else None,
        image_rotary_emb=image_rotary_emb,
        cond_rotary_emb=cond_rotary_emb if use_cond else None,
    )
    attn_output, context_attn_output = result[:2]
    cond_attn_output = result[2] if use_cond else None

    # Process attention outputs for the `hidden_states`.
    # 1. hidden_states
    attn_output = gate_msa.unsqueeze(1) * attn_output
    hidden_states = hidden_states + attn_output
    # 2. encoder_hidden_states
    context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
    encoder_hidden_states = encoder_hidden_states + context_attn_output
    # 3. condition_latents
    if use_cond:
        cond_attn_output = cond_gate_msa.unsqueeze(1) * cond_attn_output
        condition_latents = condition_latents + cond_attn_output
        if model_config.get("add_cond_attn", False):
            hidden_states += cond_attn_output

    # LayerNorm + MLP.
    # 1. hidden_states
    norm_hidden_states = self.norm2(hidden_states)
    norm_hidden_states = (
        norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
    )
    # 2. encoder_hidden_states
    norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
    norm_encoder_hidden_states = (
        norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
    )
    # 3. condition_latents
    if use_cond:
        norm_condition_latents = self.norm2(condition_latents)
        norm_condition_latents = (
            norm_condition_latents * (1 + cond_scale_mlp[:, None])
            + cond_shift_mlp[:, None]
        )

    # Feed-forward.
    with enable_lora((self.ff.net[2],), model_config.get("latent_lora", False)):
        # 1. hidden_states
        ff_output = self.ff(norm_hidden_states)
        ff_output = gate_mlp.unsqueeze(1) * ff_output
    # 2. encoder_hidden_states
    context_ff_output = self.ff_context(norm_encoder_hidden_states)
    context_ff_output = c_gate_mlp.unsqueeze(1) * context_ff_output
    # 3. condition_latents
    if use_cond:
        cond_ff_output = self.ff(norm_condition_latents)
        cond_ff_output = cond_gate_mlp.unsqueeze(1) * cond_ff_output

    # Process feed-forward outputs.
    hidden_states = hidden_states + ff_output
    encoder_hidden_states = encoder_hidden_states + context_ff_output
    if use_cond:
        condition_latents = condition_latents + cond_ff_output

    # Clip to avoid overflow.
    if encoder_hidden_states.dtype == torch.float16:
        encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)

    return encoder_hidden_states, hidden_states, condition_latents if use_cond else None


def single_block_forward(
    self,
    hidden_states: torch.FloatTensor,
    temb: torch.FloatTensor,
    image_rotary_emb=None,
    condition_latents: torch.FloatTensor = None,
    cond_temb: torch.FloatTensor = None,
    cond_rotary_emb=None,
    model_config: Optional[Dict[str, Any]] = {},
):

    using_cond = condition_latents is not None
    residual = hidden_states
    with enable_lora(
        (
            self.norm.linear,
            self.proj_mlp,
        ),
        model_config.get("latent_lora", False),
    ):
        norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
        mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
    if using_cond:
        residual_cond = condition_latents
        norm_condition_latents, cond_gate = self.norm(condition_latents, emb=cond_temb)
        mlp_cond_hidden_states = self.act_mlp(self.proj_mlp(norm_condition_latents))

    attn_output = attn_forward(
        self.attn,
        model_config=model_config,
        hidden_states=norm_hidden_states,
        image_rotary_emb=image_rotary_emb,
        **(
            {
                "condition_latents": norm_condition_latents,
                "cond_rotary_emb": cond_rotary_emb if using_cond else None,
            }
            if using_cond
            else {}
        ),
    )
    if using_cond:
        attn_output, cond_attn_output = attn_output

    with enable_lora((self.proj_out,), model_config.get("latent_lora", False)):
        hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
        gate = gate.unsqueeze(1)
        hidden_states = gate * self.proj_out(hidden_states)
        hidden_states = residual + hidden_states
    if using_cond:
        condition_latents = torch.cat([cond_attn_output, mlp_cond_hidden_states], dim=2)
        cond_gate = cond_gate.unsqueeze(1)
        condition_latents = cond_gate * self.proj_out(condition_latents)
        condition_latents = residual_cond + condition_latents

    if hidden_states.dtype == torch.float16:
        hidden_states = hidden_states.clip(-65504, 65504)

    return hidden_states if not using_cond else (hidden_states, condition_latents)