Spaces:
Sleeping
Sleeping
File size: 47,883 Bytes
ea54f0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 |
"""
Advanced Academic Text Humanizer with State-of-the-Art ML Models
This module provides cutting-edge text transformation capabilities using the latest
ML models for superior AI text humanization, including T5 paraphrasing, advanced
sentence transformers, and AI detection avoidance techniques.
"""
import ssl
import random
import warnings
import re
import logging
import math
from typing import List, Dict, Tuple, Optional, Union
from dataclasses import dataclass
from functools import lru_cache
import nltk
import spacy
import torch
import numpy as np
from nltk.tokenize import word_tokenize, sent_tokenize
from nltk.corpus import wordnet, stopwords
from sentence_transformers import SentenceTransformer, util
from transformers import (
T5ForConditionalGeneration, T5Tokenizer,
PegasusForConditionalGeneration, PegasusTokenizer,
pipeline, AutoTokenizer, AutoModelForCausalLM
)
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Suppress warnings
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)
# Global models
NLP_GLOBAL = None
DEVICE = torch.device("mps" if torch.backends.mps.is_available() else "cuda" if torch.cuda.is_available() else "cpu")
# Latest state-of-the-art models configuration
LATEST_MODELS = {
'sentence_transformers': {
'premium': 'sentence-transformers/all-MiniLM-L12-v2', # Lighter premium option
'balanced': 'sentence-transformers/all-MiniLM-L6-v2', # Fast and reliable
'fast': 'sentence-transformers/all-MiniLM-L6-v2' # Same as balanced for consistency
},
'paraphrasing': {
'premium': 'google-t5/t5-base', # Much lighter than UL2
'balanced': 'google-t5/t5-small', # Good balance
'fast': 'google-t5/t5-small' # Fast and efficient
},
'text_generation': {
'premium': 'google-t5/t5-base', # Much lighter than 70B models
'balanced': 'google-t5/t5-small', # Small and fast
'fast': 'google-t5/t5-small' # Consistent with balanced
}
}
def initialize_nlp():
"""Initialize the global NLP model with enhanced capabilities."""
global NLP_GLOBAL
if NLP_GLOBAL is None:
try:
NLP_GLOBAL = spacy.load("en_core_web_sm")
logger.info("Successfully loaded spaCy model")
except Exception as e:
logger.error(f"Failed to load spaCy model: {e}")
raise
# Initialize on import
try:
initialize_nlp()
except Exception as e:
logger.warning(f"Could not initialize NLP model: {e}")
@dataclass
class TextSegment:
"""Enhanced text segment with additional metadata."""
content: str
segment_type: str # 'text', 'markdown', 'code', 'list', 'header'
line_number: int
preserve_formatting: bool = False
perplexity_score: float = 0.0
ai_probability: float = 0.0
class AdvancedMarkdownPreserver:
"""Enhanced markdown preservation with better pattern recognition."""
def __init__(self):
self.patterns = {
'code_block': re.compile(r'```[\s\S]*?```', re.MULTILINE),
'inline_code': re.compile(r'`[^`]+`'),
'header': re.compile(r'^#{1,6}\s+.*$', re.MULTILINE),
'list_item': re.compile(r'^\s*[-*+]\s+.*$', re.MULTILINE),
'numbered_list': re.compile(r'^\s*\d+\.\s+.*$', re.MULTILINE),
'link': re.compile(r'\[([^\]]+)\]\(([^)]+)\)'),
'bold': re.compile(r'\*\*([^*]+)\*\*'),
'italic': re.compile(r'\*([^*]+)\*'),
'blockquote': re.compile(r'^>\s+.*$', re.MULTILINE),
'horizontal_rule': re.compile(r'^---+$', re.MULTILINE),
'table_row': re.compile(r'^\s*\|.*\|\s*$', re.MULTILINE),
'latex_math': re.compile(r'\$\$.*?\$\$|\$.*?\$', re.DOTALL),
'footnote': re.compile(r'\[\^[^\]]+\]'),
}
def segment_text(self, text: str) -> List[TextSegment]:
"""Segment text with enhanced analysis."""
segments = []
lines = text.split('\n')
for i, line in enumerate(lines):
segment_type = self._identify_line_type(line)
preserve = segment_type != 'text'
# Calculate perplexity and AI probability for text segments
perplexity = self._calculate_perplexity(line) if segment_type == 'text' else 0.0
ai_prob = self._calculate_ai_probability(line) if segment_type == 'text' else 0.0
segments.append(TextSegment(
content=line,
segment_type=segment_type,
line_number=i,
preserve_formatting=preserve,
perplexity_score=perplexity,
ai_probability=ai_prob
))
return segments
def _identify_line_type(self, line: str) -> str:
"""Enhanced line type identification."""
if not line.strip():
return 'empty'
for pattern_name, pattern in self.patterns.items():
if pattern.match(line):
return pattern_name
return 'text'
def _calculate_perplexity(self, text: str) -> float:
"""Calculate text perplexity as an AI detection metric."""
if not text.strip():
return 0.0
words = word_tokenize(text.lower())
if len(words) < 3:
return 0.0
# Simple perplexity approximation based on word frequency patterns
word_lengths = [len(word) for word in words if word.isalpha()]
if not word_lengths:
return 0.0
avg_length = np.mean(word_lengths)
length_variance = np.var(word_lengths)
# AI text tends to have more consistent word lengths (lower variance)
perplexity = length_variance / (avg_length + 1e-6)
return min(perplexity, 10.0) # Cap at 10
def _calculate_ai_probability(self, text: str) -> float:
"""Calculate probability that text is AI-generated."""
if not text.strip():
return 0.0
# Check for AI-typical patterns
ai_indicators = 0
total_checks = 6
# 1. Consistent sentence structure
sentences = sent_tokenize(text)
if len(sentences) > 1:
lengths = [len(sent.split()) for sent in sentences]
if np.std(lengths) < 3: # Very consistent lengths
ai_indicators += 1
# 2. Overuse of transitional phrases
transitions = ['however', 'moreover', 'furthermore', 'additionally', 'consequently']
transition_count = sum(1 for trans in transitions if trans in text.lower())
if transition_count > len(sentences) * 0.3:
ai_indicators += 1
# 3. Lack of contractions
contractions = ["n't", "'ll", "'re", "'ve", "'d", "'m"]
if not any(cont in text for cont in contractions) and len(text.split()) > 10:
ai_indicators += 1
# 4. Overly formal language in casual contexts
formal_words = ['utilize', 'facilitate', 'demonstrate', 'implement', 'comprehensive']
formal_count = sum(1 for word in formal_words if word in text.lower())
if formal_count > len(text.split()) * 0.1:
ai_indicators += 1
# 5. Perfect grammar (rarely natural)
if len(text) > 50 and not re.search(r'[.]{2,}|[!]{2,}|[?]{2,}', text):
ai_indicators += 1
# 6. Repetitive phrasing patterns
words = text.lower().split()
if len(words) > 10:
unique_words = len(set(words))
if unique_words / len(words) < 0.6: # Low lexical diversity
ai_indicators += 1
return ai_indicators / total_checks
def reconstruct_text(self, segments: List[TextSegment]) -> str:
"""Reconstruct text from processed segments."""
return '\n'.join(segment.content for segment in segments)
def download_nltk_resources():
"""Download required NLTK resources with comprehensive coverage."""
try:
_create_unverified_https_context = ssl._create_unverified_context
except AttributeError:
pass
else:
ssl._create_default_https_context = _create_unverified_https_context
resources = [
'punkt', 'averaged_perceptron_tagger', 'punkt_tab',
'wordnet', 'averaged_perceptron_tagger_eng', 'stopwords',
'vader_lexicon', 'omw-1.4'
]
for resource in resources:
try:
nltk.download(resource, quiet=True)
logger.info(f"Successfully downloaded {resource}")
except Exception as e:
logger.warning(f"Could not download {resource}: {str(e)}")
class StateOfTheArtHumanizer:
"""State-of-the-art humanizer with LATEST 2025 models."""
def __init__(
self,
sentence_model: str = 'fast', # 🚀 FAST: Uses MiniLM-L6-v2 (fast)
paraphrase_model: str = 'fast', # 🎯 FAST: T5-Small
text_generation_model: str = 'fast', # 🔥 FAST: T5-Small
device: Optional[str] = None,
enable_advanced_models: bool = True, # Always enabled for quality
model_quality: str = 'fast' # 'premium', 'balanced', 'fast'
):
"""Initialize with latest 2025 state-of-the-art models."""
self.device = device or str(DEVICE)
self.enable_advanced_models = enable_advanced_models
self.model_quality = model_quality
# Map model quality to specific models
self.sentence_model_name = self._get_model_name('sentence_transformers', sentence_model)
self.paraphrase_model_name = self._get_model_name('paraphrasing', paraphrase_model)
self.text_gen_model_name = self._get_model_name('text_generation', text_generation_model)
# Initialize models
self.sentence_model = None
self.paraphrase_models = {}
self.text_gen_model = None
logger.info(f"🚀 Initializing SOTA Humanizer with:")
logger.info(f" 📊 Sentence Model: {self.sentence_model_name}")
logger.info(f" 🧠 Paraphrase Model: {self.paraphrase_model_name}")
logger.info(f" 🔥 Text Gen Model: {self.text_gen_model_name}")
self._initialize_models()
def _get_model_name(self, category: str, quality: str) -> str:
"""Get the actual model name from the quality setting."""
if quality in LATEST_MODELS[category]:
return LATEST_MODELS[category][quality]
else:
# If specific model name provided, use it directly
return quality
def _initialize_models(self):
"""Initialize all models with error handling."""
try:
# Initialize sentence transformer (BGE-M3 or fallback)
logger.info(f"🔄 Loading sentence model: {self.sentence_model_name}")
self.sentence_model = SentenceTransformer(self.sentence_model_name, device=self.device)
logger.info("✅ Sentence model loaded successfully")
# Initialize paraphrasing models
self._initialize_paraphrase_models(self.paraphrase_model_name)
# Initialize text generation model (if premium)
if self.model_quality == 'premium' and self.enable_advanced_models:
self._initialize_text_generation_model()
except Exception as e:
logger.error(f"❌ Model initialization failed: {e}")
# Fallback to basic models
self._initialize_fallback_models()
def _initialize_fallback_models(self):
"""Initialize fallback models if latest ones fail."""
try:
logger.info("🔄 Falling back to reliable models...")
self.sentence_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2', device=self.device)
self._initialize_paraphrase_models('google-t5/t5-small')
logger.info("✅ Fallback models loaded successfully")
except Exception as e:
logger.error(f"❌ Even fallback models failed: {e}")
def _initialize_text_generation_model(self):
"""Initialize latest text generation model (DeepSeek-R1 or Qwen3)."""
try:
if 'deepseek' in self.text_gen_model_name.lower():
logger.info(f"🚀 Loading DeepSeek model: {self.text_gen_model_name}")
# For DeepSeek models, use specific configuration
self.text_gen_tokenizer = AutoTokenizer.from_pretrained(self.text_gen_model_name)
self.text_gen_model = AutoModelForCausalLM.from_pretrained(
self.text_gen_model_name,
torch_dtype=torch.float16 if self.device != 'cpu' else torch.float32,
device_map='auto' if self.device != 'cpu' else None,
trust_remote_code=True
)
logger.info("✅ DeepSeek model loaded successfully")
elif 'qwen' in self.text_gen_model_name.lower():
logger.info(f"🔥 Loading Qwen3 model: {self.text_gen_model_name}")
# For Qwen models
self.text_gen_tokenizer = AutoTokenizer.from_pretrained(self.text_gen_model_name)
self.text_gen_model = AutoModelForCausalLM.from_pretrained(
self.text_gen_model_name,
torch_dtype=torch.float16 if self.device != 'cpu' else torch.float32,
device_map='auto' if self.device != 'cpu' else None
)
logger.info("✅ Qwen3 model loaded successfully")
else:
# Use pipeline for other models
self.text_gen_pipeline = pipeline(
"text2text-generation",
model=self.text_gen_model_name,
device=0 if self.device != 'cpu' else -1,
torch_dtype=torch.float16 if self.device != 'cpu' else torch.float32
)
logger.info("✅ Text generation pipeline loaded successfully")
except Exception as e:
logger.warning(f"⚠️ Advanced text generation model failed to load: {e}")
self.text_gen_model = None
def _initialize_paraphrase_models(self, model_name: str):
"""Initialize paraphrasing models with enhanced capabilities."""
try:
if 'ul2' in model_name.lower():
# Special handling for UL2 model
logger.info(f"🏆 Loading UL2 model: {model_name}")
self.paraphrase_models['ul2'] = pipeline(
"text2text-generation",
model=model_name,
device=0 if self.device != 'cpu' else -1,
torch_dtype=torch.float16 if self.device != 'cpu' else torch.float32
)
logger.info("✅ UL2 model loaded successfully")
elif 'flan-t5' in model_name.lower():
# FLAN-T5 models
logger.info(f"🎯 Loading FLAN-T5 model: {model_name}")
self.paraphrase_models['flan_t5'] = pipeline(
"text2text-generation",
model=model_name,
device=0 if self.device != 'cpu' else -1,
torch_dtype=torch.float16 if self.device != 'cpu' else torch.float32
)
logger.info("✅ FLAN-T5 model loaded successfully")
else:
# Standard T5 models
self.paraphrase_models['t5'] = pipeline(
"text2text-generation",
model=model_name,
device=0 if self.device != 'cpu' else -1,
torch_dtype=torch.float16 if self.device != 'cpu' else torch.float32
)
logger.info("✅ T5 model loaded successfully")
except Exception as e:
logger.error(f"❌ Paraphrase model initialization failed: {e}")
raise
def paraphrase_sentence(self, sentence: str, model_type: str = 'auto') -> str:
"""Advanced paraphrasing with latest models."""
if not sentence.strip() or len(sentence.split()) < 5: # Skip very short sentences
return sentence
try:
# Choose best available model
if model_type == 'auto':
if 'ul2' in self.paraphrase_models:
model_type = 'ul2'
elif 'flan_t5' in self.paraphrase_models:
model_type = 'flan_t5'
else:
model_type = 't5'
model = self.paraphrase_models.get(model_type)
if not model:
return sentence
# Prepare input based on model type - use simple, clean prompts
if model_type == 'ul2':
input_text = f"Rewrite: {sentence}"
elif model_type == 'flan_t5':
input_text = f"Rewrite this text: {sentence}"
else:
# Standard T5 - use basic paraphrase prompt
input_text = f"paraphrase: {sentence}"
# Generate paraphrase with conservative settings
result = model(
input_text,
max_length=min(len(sentence.split()) * 2 + 10, 100), # More conservative length
min_length=max(3, len(sentence.split()) - 3),
do_sample=True,
temperature=0.6, # Lower temperature for more conservative outputs
top_p=0.8, # Lower top_p
num_return_sequences=1,
no_repeat_ngram_size=2,
repetition_penalty=1.1
)
paraphrased = result[0]['generated_text'].strip()
# Enhanced quality checks
if self._is_quality_paraphrase_enhanced(sentence, paraphrased):
return paraphrased
else:
return sentence
except Exception as e:
logger.warning(f"⚠️ Paraphrasing failed: {e}")
return sentence
def _is_quality_paraphrase_enhanced(self, original: str, paraphrase: str) -> bool:
"""Enhanced quality check for paraphrases with stricter criteria."""
if not paraphrase or paraphrase.strip() == original.strip():
return False
# Check for editorial markers or foreign language
bad_markers = ['False:', 'Paraphrase:', 'True:', 'Note:', 'Edit:', '[', ']', 'Cette', 'loi', 'aux']
if any(marker in paraphrase for marker in bad_markers):
return False
# Check length ratio (shouldn't be too different)
length_ratio = len(paraphrase) / len(original)
if length_ratio < 0.5 or length_ratio > 2.0:
return False
# Check for broken words or missing spaces
if any(len(word) > 20 for word in paraphrase.split()): # Very long words indicate concatenation
return False
# Check semantic similarity if available
try:
if self.sentence_model:
embeddings = self.sentence_model.encode([original, paraphrase])
similarity = util.cos_sim(embeddings[0], embeddings[1]).item()
# Stricter similarity thresholds
if 'minilm' in self.sentence_model_name.lower():
return 0.7 <= similarity <= 0.95 # Good range for MiniLM
else:
return 0.65 <= similarity <= 0.95
return True # Fallback if no sentence model
except Exception as e:
logger.warning(f"⚠️ Quality check failed: {e}")
return False
def generate_with_latest_model(self, prompt: str, max_length: int = 150) -> str:
"""Generate text using the latest models (DeepSeek-R1 or Qwen3)."""
if not self.text_gen_model:
return prompt
try:
if hasattr(self, 'text_gen_tokenizer'):
# Direct model inference for DeepSeek/Qwen
inputs = self.text_gen_tokenizer.encode(prompt, return_tensors='pt')
with torch.no_grad():
outputs = self.text_gen_model.generate(
inputs,
max_length=max_length,
do_sample=True,
temperature=0.7,
top_p=0.9,
pad_token_id=self.text_gen_tokenizer.eos_token_id
)
generated = self.text_gen_tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract only the new generated part
new_text = generated[len(prompt):].strip()
return prompt + " " + new_text if new_text else prompt
elif hasattr(self, 'text_gen_pipeline'):
# Pipeline inference
result = self.text_gen_pipeline(
prompt,
max_length=max_length,
do_sample=True,
temperature=0.7,
top_p=0.9
)
return result[0]['generated_text']
except Exception as e:
logger.warning(f"⚠️ Text generation failed: {e}")
return prompt
return prompt
def _is_quality_paraphrase(self, original: str, paraphrase: str) -> bool:
"""Enhanced quality check for paraphrases using latest models."""
if not paraphrase or paraphrase.strip() == original.strip():
return False
try:
# Check semantic similarity using advanced model
if self.sentence_model:
embeddings = self.sentence_model.encode([original, paraphrase])
similarity = util.cos_sim(embeddings[0], embeddings[1]).item()
# BGE-M3 and advanced models have different thresholds
if 'bge-m3' in self.sentence_model_name.lower():
min_similarity = 0.7 # Higher threshold for BGE-M3
elif 'mpnet' in self.sentence_model_name.lower():
min_similarity = 0.65 # Medium threshold for MPNet
else:
min_similarity = 0.6 # Standard threshold
return similarity >= min_similarity
return True # Fallback if no sentence model
except Exception as e:
logger.warning(f"⚠️ Quality check failed: {e}")
return True # Conservative fallback
def enhance_with_advanced_synonyms(self, text: str) -> str:
"""Enhanced synonym replacement using latest models."""
if not text.strip():
return text
try:
doc = NLP_GLOBAL(text)
enhanced_tokens = []
for token in doc:
# Be more conservative with synonym replacement
if (token.is_alpha and not token.is_stop and
len(token.text) > 4 and token.pos_ in ['NOUN', 'VERB', 'ADJ'] and # Removed 'ADV' and increased min length
not token.is_punct and token.lemma_.lower() not in ['say', 'get', 'make', 'take', 'come', 'go']): # Avoid common verbs
# Use contextual synonym selection with lower probability
if random.random() < 0.3: # Only 30% chance of replacement
synonym = self._get_contextual_synonym_advanced(
token.text, token.pos_, text, token.i
)
if synonym and len(synonym) <= len(token.text) + 3: # Prevent very long replacements
enhanced_tokens.append(synonym + token.whitespace_)
else:
enhanced_tokens.append(token.text_with_ws)
else:
enhanced_tokens.append(token.text_with_ws)
else:
enhanced_tokens.append(token.text_with_ws)
result = ''.join(enhanced_tokens)
# Quality check: ensure result is reasonable
if len(result) > len(text) * 1.5: # Prevent text expansion beyond 150%
return text
return result
except Exception as e:
logger.warning(f"⚠️ Advanced synonym enhancement failed: {e}")
return text
def _get_contextual_synonym_advanced(self, word: str, pos: str, context: str, position: int) -> Optional[str]:
"""Advanced contextual synonym selection using latest models."""
try:
# Get traditional synonyms first
synonyms = self._get_wordnet_synonyms(word, pos)
if not synonyms or not self.sentence_model:
return None
# Use advanced sentence model for context-aware selection
original_sentence = context
best_synonym = None
best_score = -1
for synonym in synonyms[:5]: # Limit to top 5 for efficiency
# Create candidate sentence with synonym
words = context.split()
if position < len(words):
words[position] = synonym
candidate_sentence = ' '.join(words)
# Calculate semantic similarity
embeddings = self.sentence_model.encode([original_sentence, candidate_sentence])
similarity = util.cos_sim(embeddings[0], embeddings[1]).item()
# For advanced models, we want high similarity but some variation
if 'bge-m3' in self.sentence_model_name.lower():
# BGE-M3 is more nuanced
if 0.85 <= similarity <= 0.98 and similarity > best_score:
best_score = similarity
best_synonym = synonym
else:
# Standard models
if 0.8 <= similarity <= 0.95 and similarity > best_score:
best_score = similarity
best_synonym = synonym
return best_synonym
except Exception as e:
logger.warning(f"⚠️ Advanced contextual synonym selection failed: {e}")
return None
def _get_wordnet_synonyms(self, word: str, pos: str) -> List[str]:
"""Enhanced WordNet synonym extraction."""
try:
# Map spaCy POS to WordNet POS
pos_map = {
'NOUN': wordnet.NOUN,
'VERB': wordnet.VERB,
'ADJ': wordnet.ADJ,
'ADV': wordnet.ADV
}
wn_pos = pos_map.get(pos)
if not wn_pos:
return []
synonyms = set()
synsets = wordnet.synsets(word.lower(), pos=wn_pos)
for synset in synsets[:3]: # Top 3 synsets
for lemma in synset.lemmas()[:4]: # Top 4 lemmas per synset
synonym = lemma.name().replace('_', ' ')
if synonym.lower() != word.lower() and len(synonym) > 2:
synonyms.add(synonym)
return list(synonyms)
except Exception as e:
logger.warning(f"⚠️ WordNet synonym extraction failed: {e}")
return []
class AdvancedAcademicTextHumanizer:
"""
Next-generation text humanizer with state-of-the-art ML models and
advanced AI detection avoidance techniques.
"""
def __init__(
self,
sentence_model: str = 'fast', # OPTIMIZED: Use fast models by default
paraphrase_model: str = 'fast', # OPTIMIZED: Use fast models by default
p_passive: float = 0.05, # REDUCED: Very conservative passive conversion
p_synonym_replacement: float = 0.15, # REDUCED: Conservative synonym replacement
p_academic_transition: float = 0.10, # REDUCED: Conservative transitions
p_paraphrase: float = 0.10, # REDUCED: Conservative paraphrasing
seed: Optional[int] = None,
preserve_formatting: bool = True,
enable_advanced_models: bool = True, # OPTIMIZED: Always enabled for quality
ai_avoidance_mode: bool = True # OPTIMIZED: Always enabled for best results
):
"""
Initialize the advanced text humanizer with cutting-edge capabilities.
"""
if seed is not None:
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
self.nlp = NLP_GLOBAL
if self.nlp is None:
raise RuntimeError("spaCy model not initialized. Call initialize_nlp() first.")
# Initialize advanced models
self.advanced_humanizer = StateOfTheArtHumanizer(
sentence_model=sentence_model,
paraphrase_model=paraphrase_model,
enable_advanced_models=enable_advanced_models
)
# Transformation probabilities with new advanced features
self.p_passive = max(0.0, min(1.0, p_passive))
self.p_synonym_replacement = max(0.0, min(1.0, p_synonym_replacement))
self.p_academic_transition = max(0.0, min(1.0, p_academic_transition))
self.p_paraphrase = max(0.0, min(1.0, p_paraphrase))
self.preserve_formatting = preserve_formatting
self.ai_avoidance_mode = ai_avoidance_mode
self.markdown_preserver = AdvancedMarkdownPreserver()
# Enhanced academic transitions with variety
self.academic_transitions = {
'addition': [
"Moreover,", "Additionally,", "Furthermore,", "In addition,",
"What's more,", "Beyond that,", "On top of that,", "Also worth noting,"
],
'contrast': [
"However,", "Nevertheless,", "Nonetheless,", "Conversely,",
"On the contrary,", "In contrast,", "That said,", "Yet,"
],
'causation': [
"Therefore,", "Consequently,", "Thus,", "Hence,",
"As a result,", "This leads to,", "It follows that,", "Accordingly,"
],
'emphasis': [
"Notably,", "Significantly,", "Importantly,", "Remarkably,",
"It's worth emphasizing,", "Particularly noteworthy,", "Crucially,", "Indeed,"
],
'sequence': [
"Subsequently,", "Following this,", "Thereafter,", "Next,",
"In the next phase,", "Moving forward,", "Then,", "Later on,"
]
}
# Comprehensive contraction mapping
self.contraction_map = {
"n't": " not", "'re": " are", "'s": " is", "'ll": " will",
"'ve": " have", "'d": " would", "'m": " am", "'t": " not",
"won't": "will not", "can't": "cannot", "shouldn't": "should not",
"wouldn't": "would not", "couldn't": "could not", "mustn't": "must not",
"isn't": "is not", "aren't": "are not", "wasn't": "was not",
"weren't": "were not", "haven't": "have not", "hasn't": "has not",
"hadn't": "had not", "doesn't": "does not", "didn't": "did not",
"don't": "do not", "let's": "let us", "that's": "that is",
"there's": "there is", "here's": "here is", "what's": "what is",
"where's": "where is", "who's": "who is", "it's": "it is"
}
def humanize_text(
self,
text: str,
use_passive: bool = False,
use_synonyms: bool = False,
use_paraphrasing: bool = False,
preserve_paragraphs: bool = True
) -> str:
"""
Advanced text humanization with state-of-the-art techniques.
"""
if not text or not text.strip():
return text
try:
if self.preserve_formatting:
return self._humanize_with_advanced_preservation(
text, use_passive, use_synonyms, use_paraphrasing, preserve_paragraphs
)
else:
return self._humanize_advanced_simple(text, use_passive, use_synonyms, use_paraphrasing)
except Exception as e:
logger.error(f"Error during advanced text humanization: {e}")
return text
def _humanize_with_advanced_preservation(
self,
text: str,
use_passive: bool,
use_synonyms: bool,
use_paraphrasing: bool,
preserve_paragraphs: bool
) -> str:
"""Advanced humanization with comprehensive formatting preservation."""
segments = self.markdown_preserver.segment_text(text)
for segment in segments:
if segment.segment_type == 'text' and segment.content.strip():
# Apply AI detection avoidance if needed
if self.ai_avoidance_mode and segment.ai_probability > 0.6:
segment.content = self._apply_ai_avoidance_techniques(
segment.content, use_passive, use_synonyms, use_paraphrasing
)
else:
segment.content = self._transform_text_segment_advanced(
segment.content, use_passive, use_synonyms, use_paraphrasing
)
return self.markdown_preserver.reconstruct_text(segments)
def _apply_ai_avoidance_techniques(
self,
text: str,
use_passive: bool,
use_synonyms: bool,
use_paraphrasing: bool
) -> str:
"""Apply specialized techniques to avoid AI detection."""
try:
# 1. Add natural imperfections
text = self._add_natural_variations(text)
# 2. Increase sentence variety
text = self._vary_sentence_structure(text)
# 3. Reduce formal language density
text = self._reduce_formality(text)
# 4. Apply standard transformations
text = self._transform_text_segment_advanced(
text, use_passive, use_synonyms, use_paraphrasing
)
return text
except Exception as e:
logger.warning(f"Error in AI avoidance: {e}")
return text
def _add_natural_variations(self, text: str) -> str:
"""Add natural human-like variations."""
# Add occasional contractions to balance formality
if random.random() < 0.3:
formal_replacements = {
"do not": "don't", "will not": "won't", "cannot": "can't",
"should not": "shouldn't", "would not": "wouldn't"
}
for formal, contraction in formal_replacements.items():
if formal in text and random.random() < 0.4:
text = text.replace(formal, contraction, 1)
return text
def _vary_sentence_structure(self, text: str) -> str:
"""Increase sentence structure variety."""
sentences = sent_tokenize(text)
if len(sentences) < 2:
return text
varied_sentences = []
for i, sentence in enumerate(sentences):
if i > 0 and random.random() < 0.3:
# Occasionally start with different structures
starters = ["Well,", "Actually,", "Interestingly,", "To be clear,"]
if not any(sentence.startswith(starter) for starter in starters):
starter = random.choice(starters)
sentence = f"{starter} {sentence.lower()}"
varied_sentences.append(sentence)
return ' '.join(varied_sentences)
def _reduce_formality(self, text: str) -> str:
"""Reduce excessive formality to appear more human."""
# Replace overly formal words with more natural alternatives
formal_to_natural = {
'utilize': 'use', 'facilitate': 'help', 'demonstrate': 'show',
'implement': 'put in place', 'comprehensive': 'complete',
'methodology': 'method', 'substantial': 'large',
'numerous': 'many', 'acquire': 'get'
}
for formal, natural in formal_to_natural.items():
if formal in text.lower() and random.random() < 0.6:
text = re.sub(r'\b' + formal + r'\b', natural, text, flags=re.IGNORECASE)
return text
def _transform_text_segment_advanced(
self,
text: str,
use_passive: bool,
use_synonyms: bool,
use_paraphrasing: bool
) -> str:
"""Advanced text segment transformation with ML models."""
try:
doc = self.nlp(text)
transformed_sentences = []
for sent in doc.sents:
sentence_str = sent.text.strip()
if not sentence_str:
continue
# 1. Expand contractions
sentence_str = self.expand_contractions_advanced(sentence_str)
# 2. Advanced paraphrasing (new!)
if use_paraphrasing and random.random() < self.p_paraphrase:
paraphrased = self.advanced_humanizer.paraphrase_sentence(sentence_str)
if paraphrased != sentence_str:
sentence_str = paraphrased
# 3. Context-aware academic transitions
if random.random() < self.p_academic_transition:
sentence_str = self.add_contextual_transitions(sentence_str)
# 4. Advanced passive voice conversion
if use_passive and random.random() < self.p_passive:
sentence_str = self.convert_to_passive_advanced(sentence_str)
# 5. Enhanced contextual synonym replacement
if use_synonyms and random.random() < self.p_synonym_replacement:
sentence_str = self.enhance_with_advanced_synonyms(sentence_str)
transformed_sentences.append(sentence_str)
result = ' '.join(transformed_sentences)
return result if result.strip() else text
except Exception as e:
logger.warning(f"Error in advanced transformation: {e}")
return text
def expand_contractions_advanced(self, sentence: str) -> str:
"""Enhanced contraction expansion with better context handling."""
# Handle special cases with regex for better accuracy
for contraction, expansion in self.contraction_map.items():
if len(contraction) > 3: # Full word contractions
pattern = r'\b' + re.escape(contraction) + r'\b'
sentence = re.sub(pattern, expansion, sentence, flags=re.IGNORECASE)
# Handle suffix contractions
tokens = word_tokenize(sentence)
expanded_tokens = []
for token in tokens:
original_case = token
lower_token = token.lower()
replaced = False
for contraction, expansion in self.contraction_map.items():
if (len(contraction) <= 3 and
lower_token.endswith(contraction) and
len(lower_token) > len(contraction)):
base = lower_token[:-len(contraction)]
new_token = base + expansion
# Preserve capitalization pattern
if original_case[0].isupper():
new_token = new_token[0].upper() + new_token[1:]
expanded_tokens.append(new_token)
replaced = True
break
if not replaced:
expanded_tokens.append(token)
return ' '.join(expanded_tokens)
def add_contextual_transitions(self, sentence: str) -> str:
"""Add contextually intelligent academic transitions."""
sentence_lower = sentence.lower()
# Enhanced context detection
context_patterns = {
'contrast': ['but', 'however', 'although', 'while', 'despite', 'whereas'],
'causation': ['because', 'since', 'therefore', 'so', 'due to', 'as a result'],
'addition': ['also', 'and', 'plus', 'including', 'along with'],
'emphasis': ['important', 'significant', 'notable', 'crucial', 'key'],
'sequence': ['first', 'second', 'then', 'next', 'finally', 'last']
}
# Determine best transition type
best_type = 'addition' # default
max_matches = 0
for transition_type, patterns in context_patterns.items():
matches = sum(1 for pattern in patterns if pattern in sentence_lower)
if matches > max_matches:
max_matches = matches
best_type = transition_type
# Select appropriate transition
transition = random.choice(self.academic_transitions[best_type])
return f"{transition} {sentence}"
def convert_to_passive_advanced(self, sentence: str) -> str:
"""Advanced passive voice conversion with better grammatical accuracy."""
try:
doc = self.nlp(sentence)
# Find suitable active voice patterns
for token in doc:
if (token.pos_ == 'VERB' and
token.dep_ == 'ROOT' and
token.tag_ in ['VBD', 'VBZ', 'VBP']):
# Find subject and object
subj = None
obj = None
for child in token.children:
if child.dep_ == 'nsubj':
subj = child
elif child.dep_ in ['dobj', 'pobj']:
obj = child
if subj and obj:
# Create passive transformation
verb_base = token.lemma_
# Choose auxiliary verb
aux = 'was' if subj.tag_ in ['NN', 'NNP'] else 'were'
if token.tag_ in ['VBZ', 'VBP']: # Present tense
aux = 'is' if subj.tag_ in ['NN', 'NNP'] else 'are'
# Create past participle
if verb_base.endswith('e'):
past_participle = verb_base + 'd'
elif verb_base in ['go', 'do', 'be', 'have']:
# Irregular verbs
irregular_map = {'go': 'gone', 'do': 'done', 'be': 'been', 'have': 'had'}
past_participle = irregular_map.get(verb_base, verb_base + 'ed')
else:
past_participle = verb_base + 'ed'
# Construct passive sentence
passive_phrase = f"{obj.text} {aux} {past_participle} by {subj.text}"
# Replace in original sentence
original_phrase = f"{subj.text} {token.text} {obj.text}"
if original_phrase in sentence:
return sentence.replace(original_phrase, passive_phrase)
return sentence
except Exception as e:
logger.warning(f"Error in advanced passive conversion: {e}")
return sentence
def get_advanced_transformation_stats(self, original_text: str, transformed_text: str) -> Dict[str, Union[int, float]]:
"""Get comprehensive transformation statistics with ML analysis."""
orig_tokens = word_tokenize(original_text)
trans_tokens = word_tokenize(transformed_text)
orig_sents = sent_tokenize(original_text)
trans_sents = sent_tokenize(transformed_text)
# Calculate advanced metrics
stats = {
'original_word_count': len(orig_tokens),
'transformed_word_count': len(trans_tokens),
'original_sentence_count': len(orig_sents),
'transformed_sentence_count': len(trans_sents),
'word_change_ratio': len(trans_tokens) / len(orig_tokens) if orig_tokens else 0,
'sentence_change_ratio': len(trans_sents) / len(orig_sents) if orig_sents else 0,
'character_count_original': len(original_text),
'character_count_transformed': len(transformed_text),
}
# Add ML-based analysis
try:
# Semantic similarity
if hasattr(self, 'advanced_humanizer') and self.advanced_humanizer.sentence_model:
embeddings = self.advanced_humanizer.sentence_model.encode([original_text, transformed_text])
semantic_similarity = float(util.cos_sim(embeddings[0], embeddings[1]).item())
stats['semantic_similarity'] = semantic_similarity
# AI detection metrics
original_segments = self.markdown_preserver.segment_text(original_text)
transformed_segments = self.markdown_preserver.segment_text(transformed_text)
orig_ai_scores = [seg.ai_probability for seg in original_segments if seg.segment_type == 'text']
trans_ai_scores = [seg.ai_probability for seg in transformed_segments if seg.segment_type == 'text']
if orig_ai_scores and trans_ai_scores:
stats['original_ai_probability'] = np.mean(orig_ai_scores)
stats['transformed_ai_probability'] = np.mean(trans_ai_scores)
stats['ai_detection_improvement'] = stats['original_ai_probability'] - stats['transformed_ai_probability']
except Exception as e:
logger.warning(f"Error calculating advanced stats: {e}")
return stats
def _humanize_advanced_simple(self, text: str, use_passive: bool, use_synonyms: bool, use_paraphrasing: bool) -> str:
"""Simple advanced transformation without formatting preservation."""
paragraphs = text.split('\n\n')
transformed_paragraphs = []
for paragraph in paragraphs:
if paragraph.strip():
transformed = self._transform_text_segment_advanced(
paragraph, use_passive, use_synonyms, use_paraphrasing
)
transformed_paragraphs.append(transformed)
else:
transformed_paragraphs.append(paragraph)
return '\n\n'.join(transformed_paragraphs) |