File size: 8,190 Bytes
8d5368b
 
7f2869e
8d5368b
 
 
 
 
7f2869e
8d5368b
d17b42f
7f2869e
 
 
d17b42f
 
7f2869e
 
 
 
 
 
d17b42f
7f2869e
 
 
 
 
 
 
 
d17b42f
7f2869e
 
 
 
 
 
 
 
 
 
 
 
 
d17b42f
7f2869e
 
 
 
 
 
d17b42f
 
 
 
19b18d7
d17b42f
7f2869e
d17b42f
7f2869e
d17b42f
7f2869e
d17b42f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d5368b
d17b42f
8d5368b
d17b42f
 
8d5368b
d17b42f
6a30a2f
d17b42f
 
 
 
8d5368b
 
 
6a30a2f
d17b42f
8d5368b
 
8dfc1a7
d17b42f
 
 
 
 
12e88b8
8999eed
a03d910
d17b42f
 
 
 
 
 
f56c61e
d17b42f
8d5368b
 
d17b42f
8d5368b
7f2869e
8d5368b
 
d17b42f
 
 
 
 
 
 
 
 
7f2869e
8d5368b
7f2869e
8d5368b
 
 
b4b2324
 
 
d17b42f
b4b2324
 
 
 
 
 
 
 
 
 
d17b42f
b4b2324
 
 
 
d17b42f
 
b4b2324
8d5368b
 
 
 
 
 
0066098
 
b4b2324
 
 
 
 
d17b42f
0066098
 
8d5368b
0066098
 
 
d17b42f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import os
import multiprocessing
import concurrent.futures
from langchain.document_loaders import TextLoader, DirectoryLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS
from sentence_transformers import SentenceTransformer
import faiss
import torch
import numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
from datetime import datetime
import json
import gradio as gr
import re
from threading import Thread

class DocumentRetrievalAndGeneration:
    def __init__(self, embedding_model_name, lm_model_id, data_folder):
        self.all_splits = self.load_documents(data_folder)
        self.embeddings = SentenceTransformer(embedding_model_name)
        self.gpu_index = self.create_faiss_index()
        self.tokenizer, self.model = self.initialize_llm(lm_model_id)

    def load_documents(self, folder_path):
        loader = DirectoryLoader(folder_path, loader_cls=TextLoader)
        documents = loader.load()
        text_splitter = RecursiveCharacterTextSplitter(chunk_size=5000, chunk_overlap=250)
        all_splits = text_splitter.split_documents(documents)
        print('Length of documents:', len(documents))
        print("LEN of all_splits", len(all_splits))
        for i in range(3):
            print(all_splits[i].page_content)
        return all_splits

    def create_faiss_index(self):
        all_texts = [split.page_content for split in self.all_splits]
        embeddings = self.embeddings.encode(all_texts, convert_to_tensor=True).cpu().numpy()
        index = faiss.IndexFlatL2(embeddings.shape[1])
        index.add(embeddings)
        gpu_resource = faiss.StandardGpuResources()
        gpu_index = faiss.index_cpu_to_gpu(gpu_resource, 0, index)
        return gpu_index

    def initialize_llm(self, model_id):
        quantization_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=torch.bfloat16
        )
        tokenizer = AutoTokenizer.from_pretrained(model_id)
        model = AutoModelForCausalLM.from_pretrained(
            model_id,
            torch_dtype=torch.bfloat16,
            device_map="auto",
           
            quantization_config=quantization_config
        )
        return tokenizer, model

    def generate_response_with_timeout(self, input_ids, max_new_tokens=1000):
        try:
            streamer = TextIteratorStreamer(self.tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
            generate_kwargs = dict(
                input_ids=input_ids,
                max_new_tokens=max_new_tokens,
                do_sample=True,
                top_p=1.0,
                top_k=20,
                temperature=0.8,
                repetition_penalty=1.2,
                eos_token_id=[128001, 128008, 128009],
                streamer=streamer,
            )
            
            thread = Thread(target=self.model.generate, kwargs=generate_kwargs)
            thread.start()
            
            generated_text = ""
            for new_text in streamer:
                generated_text += new_text
            
            return generated_text
        except Exception as e:
            print(f"Error in generate_response_with_timeout: {str(e)}")
            return "Text generation process encountered an error"

    def query_and_generate_response(self, query):
        similarityThreshold = 1
        query_embedding = self.embeddings.encode(query, convert_to_tensor=True).cpu().numpy()
        distances, indices = self.gpu_index.search(np.array([query_embedding]), k=3)
        print("Distance", distances, "indices", indices)
        content = ""
        filtered_results = []
        for idx, distance in zip(indices[0], distances[0]):
            if distance <= similarityThreshold:
                filtered_results.append(idx)
            for i in filtered_results:
                print(self.all_splits[i].page_content)
            content += "-" * 50 + "\n"
            content += self.all_splits[idx].page_content + "\n"
            print("CHUNK", idx)
            print("Distance:", distance)
            print("indices:", indices)
            print(self.all_splits[idx].page_content)
            print("############################")

        conversation = [
            {"role": "system", "content": "You are a knowledgeable assistant with access to a comprehensive database."},
            {"role": "user", "content": f"""
            I need you to answer my question and provide related information in a specific format.
            I have provided five relatable json files {content}, choose the most suitable chunks for answering the query.
            RETURN ONLY SOLUTION without additional comments, sign-offs, retrived chunks, refrence to any Ticket or extra phrases. Be direct and to the point.
            IF THERE IS NO ANSWER RELATABLE IN RETRIEVED CHUNKS, RETURN "NO SOLUTION AVAILABLE".
            DO NOT GIVE REFRENCE TO ANY CHUNKS OR TICKETS,BE ON POINT.
            
            Here's my question:
            Query: {query}
            Solution==>
            """}
        ]
        #Include a final answer without additional comments, sign-offs, or extra phrases. Be direct and to the point.
        input_ids = self.tokenizer.apply_chat_template(conversation, return_tensors="pt").to(self.model.device)
        
        start_time = datetime.now()
        generated_response = self.generate_response_with_timeout(input_ids)
        elapsed_time = datetime.now() - start_time

        print("Generated response:", generated_response)
        print("Time elapsed:", elapsed_time)
        print("Device in use:", self.model.device)

        solution_text = generated_response.strip()
        if "Solution:" in solution_text:
            solution_text = solution_text.split("Solution:", 1)[1].strip()

        # Post-processing to remove "assistant" prefix
        solution_text = re.sub(r'^assistant\s*', '', solution_text, flags=re.IGNORECASE)
        solution_text = solution_text.strip()

        return solution_text, content

    def qa_infer_gradio(self, query):
        response = self.query_and_generate_response(query)
        return response

if __name__ == "__main__":
    embedding_model_name = 'flax-sentence-embeddings/all_datasets_v3_MiniLM-L12'
    lm_model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"
    data_folder = 'sample_embedding_folder2'

    doc_retrieval_gen = DocumentRetrievalAndGeneration(embedding_model_name, lm_model_id, data_folder)

    def launch_interface():
        css_code = """
            .gradio-container {
                background-color: #daccdb;
            }
            button {
                background-color: #927fc7;
                color: black;
                border: 1px solid black;
                padding: 10px;
                margin-right: 10px;
                font-size: 16px;
                font-weight: bold;
            }
        """
        EXAMPLES = [
            "On which devices can the VIP and CSI2 modules operate simultaneously?", 
            "I'm using Code Composer Studio 5.4.0.00091 and enabled FPv4SPD16 floating point support for CortexM4 in TDA2. However, after building the project, the .asm file shows --float_support=vfplib instead of FPv4SPD16. Why is this happening?", 
            "Could you clarify the maximum number of cameras that can be connected simultaneously to the video input ports on the TDA2x SoC, considering it supports up to 10 multiplexed input ports and includes 3 dedicated video input modules?"
        ]

        interface = gr.Interface(
            fn=doc_retrieval_gen.qa_infer_gradio,
            inputs=[gr.Textbox(label="QUERY", placeholder="Enter your query here")],
            allow_flagging='never',
            examples=EXAMPLES,
            cache_examples=False,
            outputs=[gr.Textbox(label="RESPONSE"), gr.Textbox(label="RELATED QUERIES")],
            css=css_code,
            title="TI E2E FORUM"
        )

        interface.launch(debug=True)

    launch_interface()