File size: 8,446 Bytes
0545ca0
54c28b8
0545ca0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e36f19
 
0545ca0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19b3ae3
0545ca0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf6bdc0
 
54c28b8
 
 
 
 
 
 
 
7eb3ea0
 
4b8b848
1443530
 
bf6bdc0
 
 
7eb3ea0
ccbc758
0545ca0
 
 
 
7eb3ea0
4b8b848
7eb3ea0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import torch
import json
from torch import cuda, bfloat16
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, BitsAndBytesConfig, StoppingCriteria, StoppingCriteriaList
from langchain.llms import HuggingFacePipeline
from langchain.vectorstores import FAISS
from langchain.chains import ConversationalRetrievalChain
import gradio as gr
from langchain.embeddings import HuggingFaceEmbeddings
import os

class Chatbot:
    def __init__(self):
        self.HF_TOKEN = os.environ.get("HF_TOKEN", None)
        self.model_id = "mistralai/Mistral-7B-Instruct-v0.2"
        self.device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu'
        self.bnb_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_quant_type='nf4',
            bnb_4bit_use_double_quant=True,
            bnb_4bit_compute_dtype=bfloat16
        )
        self.tokenizer = AutoTokenizer.from_pretrained(self.model_id, token=self.HF_TOKEN)
        self.model = AutoModelForCausalLM.from_pretrained(self.model_id, device_map="auto", token=self.HF_TOKEN, quantization_config=self.bnb_config)
        self.stop_list = ['\nHuman:', '\n```\n']
        self.stop_token_ids = [self.tokenizer(x)['input_ids'] for x in self.stop_list]
        self.stop_token_ids = [torch.LongTensor(x).to(self.device) for x in self.stop_token_ids]
        self.stopping_criteria = StoppingCriteriaList([self.StopOnTokens()])

        self.generate_text = pipeline(
            model=self.model,
            tokenizer=self.tokenizer,
            return_full_text=True,
            task='text-generation',
            temperature=0.1,
            max_new_tokens=2048,
        )
        self.llm = HuggingFacePipeline(pipeline=self.generate_text)

        try:
            self.vectorstore = FAISS.load_local('faiss_index', HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2", model_kwargs={"device": "cuda"}))
            # self.vectorstore = FAISS.load_local('faiss_index', HuggingFaceEmbeddings(model_name="flax-sentence-embeddings/all_datasets_v3_MiniLM-L12", model_kwargs={"device": "cuda"}))
            print("Loaded embedding successfully")
        except ImportError as e:
            print("FAISS could not be imported. Make sure FAISS is installed correctly.")
            raise e

        self.chain = ConversationalRetrievalChain.from_llm(self.llm, self.vectorstore.as_retriever(), return_source_documents=True)
        self.chat_history = []

    class StopOnTokens(StoppingCriteria):
        def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
            for stop_ids in self.stop_token_ids:
                if torch.eq(input_ids[0][-len(stop_ids):], stop_ids).all():
                    return True
            return False

    def format_prompt(self, query):
        prompt=f"""
        You are a knowledgeable assistant with access to a comprehensive database. 
        I need you to answer my question and provide related information in a specific format.
        I have provided four relatable json files , choose the most suitable chunks for answering the query
        Here's what I need:
        Include a final answer without additional comments, sign-offs, or extra phrases. Be direct and to the point.
        
        Here's my question:
        Query:{query}
        Solution==>
        Example1
        Query: "How to use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM",
        Solution: "To use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM, you need to modify the configuration file of the NDK application. Specifically, change the processor reference from 'A15_0' to 'IPU1_0'.",
        
        Example2
        Query: "Can BQ25896 support I2C interface?",
        Solution: "Yes, the BQ25896 charger supports the I2C interface for communication.",
        """
        return prompt

    def qa_infer(self, query):
        content = ""
        formatted_prompt = self.format_prompt(query)
        result = self.chain({"question": formatted_prompt, "chat_history": self.chat_history})
        for doc in result['source_documents']:
            content += "-" * 50 + "\n"
            content += doc.page_content + "\n"
        print(content)
        print("#" * 100)
        print(result['answer'])

        output_file = "output.txt"
        with open(output_file, "w") as f:
            f.write("Query:\n")
            f.write(query + "\n\n")
            f.write("Answer:\n")
            f.write(result['answer'] + "\n\n")
            f.write("Source Documents:\n")
            f.write(content + "\n")

        download_link = f'<a href="file/{output_file}" download>Download Output File</a>'
        return result['answer'], content, download_link

    def launch_interface(self):
        css_code = """
            .gradio-container {
                background-color: #daccdb;
            }
            /* Button styling for all buttons */
            button {
                background-color: #927fc7; /* Default color for all other buttons */
                color: black;
                border: 1px solid black;
                padding: 10px;
                margin-right: 10px;
                font-size: 16px; /* Increase font size */
                font-weight: bold; /* Make text bold */
            }
            """
        EXAMPLES = ["TDA4 product planning and datasheet release progress? ", 
                    "I'm using Code Composer Studio 5.4.0.00091 and enabled FPv4SPD16 floating point support for CortexM4 in TDA2. However, after building the project, the .asm file shows --float_support=vfplib instead of FPv4SPD16. Why is this happening?", 
                    "Master core in TDA2XX is a15 and in TDA3XX it is m4,so we have to shift all modules that are being used by a15 in TDA2XX to m4 in TDA3xx."]
        
        

        file_path = "ticketNames.txt"

        # Read the file content
        with open(file_path, "r") as file:
            content = file.read()
        ticket_names = json.loads(content)
        dropdown = gr.Dropdown(label="Sample queries", choices=ticket_names)
        
        tab1 = gr.Interface(fn=self.qa_infer, inputs=[gr.Textbox(label="QUERY", placeholder ="Enter your query here")], allow_flagging='never', examples=EXAMPLES, cache_examples=False, outputs=[gr.Textbox(label="SOLUTION"), gr.Textbox(label="RELATED QUERIES"), gr.HTML()], css=css_code)
        tab2 = gr.Interface(fn=self.qa_infer, inputs=[dropdown], allow_flagging='never', outputs=[gr.Textbox(label="SOLUTION"), gr.Textbox(label="RELATED QUERIES"), gr.HTML()], css=css_code)#, title="FAQs") 


        # # Add dummy outputs to each interface
        # tab1.outputs = dummy_outputs
        # tab2.outputs = dummy_outputs
        
        gr.TabbedInterface([tab1, tab2],["Textbox Input", "FAQs"],title="TI E2E FORUM",css=css_code).launch(debug=True)

# Instantiate and launch the chatbot
chatbot = Chatbot()
chatbot.launch_interface()

"""Single Tab Input Inference"""

    # def launch_interface(self):
    #     css_code = """
    #         .gradio-container {
    #             background-color: #daccdb;
    #         }

    #         /* Button styling for all buttons */
    #         button {
    #             background-color: #927fc7; /* Default color for all other buttons */
    #             color: black;
    #             border: 1px solid black;
    #             padding: 10px;
    #             margin-right: 10px;
    #             font-size: 16px; /* Increase font size */
    #             font-weight: bold; /* Make text bold */
    #         }

    #         """
    #     EXAMPLES = ["TDA4 product planning and datasheet release progress? ", 
    #                 "I'm using Code Composer Studio 5.4.0.00091 and enabled FPv4SPD16 floating point support for CortexM4 in TDA2. However, after building the project, the .asm file shows --float_support=vfplib instead of FPv4SPD16. Why is this happening?", 
    #                 "Master core in TDA2XX is a15 and in TDA3XX it is m4,so we have to shift all modules that are being used by a15 in TDA2XX to m4 in TDA3xx."]

    #     demo = gr.Interface(fn=self.qa_infer, inputs=[gr.Textbox(label="QUERY", placeholder ="Enter your query here")], allow_flagging='never', examples=EXAMPLES, cache_examples=False, outputs=[gr.Textbox(label="SOLUTION"), gr.Textbox(label="RELATED QUERIES"), gr.HTML()], css=css_code)
    #     demo.launch()