Spaces:
Runtime error
Runtime error
File size: 15,962 Bytes
3f31e5e f271e1e 3f31e5e cca1ded a0af599 3f31e5e 655c930 3f31e5e f271e1e 00a9ccd 0d7d50f 00a9ccd f271e1e 3f31e5e 7440e60 3f31e5e a0af599 4c167ca 3f31e5e f271e1e 655c930 3f31e5e 195077e 3f31e5e f271e1e 195077e f271e1e 3f31e5e f271e1e 195077e 3f31e5e 655c930 f271e1e 655c930 3f31e5e 96e495c 3f31e5e 96e495c 3f31e5e 655c930 96e495c 3f31e5e 655c930 3f31e5e 22545c2 3f31e5e 655c930 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
import gradio as gr
import os
import whisper
import cv2
import json
import tempfile
import torch
import transformers
import re
import time
from torch import cuda, bfloat16
from moviepy.editor import VideoFileClip
from image_caption import Caption
from pathlib import Path
from langchain import PromptTemplate
from langchain import LLMChain
from langchain.llms import HuggingFacePipeline
from difflib import SequenceMatcher
import argparse
import shutil
from PIL import Image
import google.generativeai as genai
from huggingface_hub import InferenceClient
class VideoClassifier:
def __init__(self, no_of_frames, mode='interface',model='gemini'):
self.no_of_frames = no_of_frames
self.mode = mode
self.model_name = model.strip().lower()
print(self.model_name)
os.environ["TOKENIZERS_PARALLELISM"] = "false"
if self.model_name=='mistral':
print("Setting up Mistral model for Class Selection")
self.setup_mistral_model()
else :
print("Setting up Gemini model for Class Selection")
self.setup_gemini_model()
self.setup_paths()
self.hf_key = os.environ.get("HF_KEY", None)
def setup_paths(self):
self.path = './results'
if os.path.exists(self.path):
shutil.rmtree(self.path)
os.mkdir(self.path)
def setup_gemini_model(self):
self.genai = genai
self.genai.configure(api_key="AIzaSyAFG94rVbm9eWepO5uPGsMha8XJ-sHbMdA")
self.genai_model = genai.GenerativeModel('gemini-pro')
self.whisper_model = whisper.load_model("base")
self.img_cap = Caption()
def setup_mistral_space_model(self):
if not self.hf_key:
raise ValueError("Hugging Face API key is not set or invalid.")
self.client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.2")
self.whisper_model = whisper.load_model("base")
self.img_cap = Caption()
def setup_mistral_model(self):
self.model_id = "mistralai/Mistral-7B-Instruct-v0.2"
self.device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu'
# self.device_name = torch.cuda.get_device_name()
# print(f"Using device: {self.device} ({self.device_name})")
bnb_config = transformers.BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type='nf4',
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=bfloat16,
)
hf_auth = self.hf_key
print(hf_auth)
model_config = transformers.AutoConfig.from_pretrained(
self.model_id,
use_auth_token=hf_auth
)
self.model = transformers.AutoModelForCausalLM.from_pretrained(
self.model_id,
trust_remote_code=True,
config=model_config,
quantization_config=bnb_config,
use_auth_token=hf_auth
)
self.model.eval()
self.tokenizer = transformers.AutoTokenizer.from_pretrained(
self.model_id,
use_auth_token=hf_auth
)
self.generate_text = transformers.pipeline(
model=self.model, tokenizer=self.tokenizer,
return_full_text=True,
task='text-generation',
temperature=0.01,
max_new_tokens=32
)
self.whisper_model = whisper.load_model("base")
self.img_cap = Caption()
self.llm = HuggingFacePipeline(pipeline=self.generate_text)
def audio_extraction(self,video_input):
print(f"Processing video: {video_input} with {self.no_of_frames} frames.")
mp4_file = video_input
video_name = mp4_file.split("/")[-1]
wav_file = "results/audiotrack.wav"
video_clip = VideoFileClip(mp4_file)
audioclip = video_clip.audio
wav_file = audioclip.write_audiofile(wav_file)
audioclip.close()
video_clip.close()
audiotrack = "results/audiotrack.wav"
result = self.whisper_model.transcribe(audiotrack, fp16=False)
transcript = result["text"]
print("TRANSCRIPT",transcript)
return transcript
def generate_text(self, inputs, parameters=None):
if parameters is None:
parameters = {
"temperature": 0.7,
"max_new_tokens": 50,
"top_p": 0.9,
"repetition_penalty": 1.2
}
return self.client(inputs, parameters)
def classify_video(self,video_input):
transcript=self.audio_extraction(video_input)
video = cv2.VideoCapture(video_input)
length = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
no_of_frame = int(self.no_of_frames)
temp_div = length // no_of_frame
currentframe = 50
caption_text = []
for i in range(no_of_frame):
video.set(cv2.CAP_PROP_POS_FRAMES, currentframe)
ret, frame = video.read()
if ret:
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
image = Image.fromarray(frame)
content = self.img_cap.predict_image_caption_gemini(image)
print("content", content)
caption_text.append(content)
currentframe += temp_div - 1
else:
break
captions = ", ".join(caption_text)
print("CAPTIONS", captions)
video.release()
cv2.destroyAllWindows()
main_categories = Path("main_classes.txt").read_text()
main_categories_list = ['Automotive', 'Books and Literature', 'Business and Finance', 'Careers', 'Education','Family and Relationships',
'Fine Art', 'Food & Drink', 'Healthy Living', 'Hobbies & Interests', 'Home & Garden','Medical Health', 'Movies', 'Music and Audio',
'News and Politics', 'Personal Finance', 'Pets', 'Pop Culture','Real Estate', 'Religion & Spirituality', 'Science', 'Shopping', 'Sports',
'Style & Fashion','Technology & Computing', 'Television', 'Travel', 'Video Gaming']
generate_kwargs = {
"temperature": 0.9,
"max_new_tokens": 256,
"top_p": 0.95,
"repetition_penalty": 1.0,
"do_sample": True,
"seed": 42,
"return_full_text": False
}
template1 = '''Given below are the different type of main video classes
{main_categories}
You are a text classifier that catergorises the transcript and captions into one main class whose context match with one main class and only generate main class name no need of sub classe or explanation.
Give more importance to Transcript while classifying .
Transcript: {transcript}
Captions: {captions}
Return only the answer chosen from list and nothing else
Main-class => '''
prompt1 = PromptTemplate(template=template1, input_variables=['main_categories', 'transcript', 'captions'])
print("PROMPT 1",prompt1)
# print(self.model)
# print(f"Current model in use: {self.model}")
if self.model_name=='mistral':
try:
chain1 = LLMChain(llm=self.llm, prompt=prompt1)
main_class = chain1.predict(main_categories=main_categories, transcript=transcript, captions=captions)
except:
stream = self.client.text_generation(prompt1, **generate_kwargs, stream=True, details=True)
output = ""
for response in stream:
output += response['token'].text
print("Streaming output:", output)
main_class = output.strip()
print(main_class)
print("#######################################################")
pattern = r"Main-class =>\s*(.+)"
match = re.search(pattern, main_class)
if match:
main_class = match.group(1).strip()
else:
main_class = None
else:
prompt_text = template1.format(main_categories=main_categories, transcript=transcript, captions=captions)
response = self.genai_model.generate_content(contents=prompt_text)
main_class = response.text
print(main_class)
print("#######################################################")
print("MAIN CLASS: ",main_class)
def category_class(class_name,categories_list):
def similar(str1, str2):
return SequenceMatcher(None, str1, str2).ratio()
index_no = 0
sim = 0
for sub in categories_list:
res = similar(class_name, sub)
if res>sim:
sim = res
index_no = categories_list.index(sub)
class_name = categories_list[index_no]
return class_name
if main_class not in main_categories_list:
main_class = category_class(main_class,main_categories_list)
print("POST PROCESSED MAIN CLASS : ",main_class)
tier_1_index_no = main_categories_list.index(main_class) + 1
with open('categories_json.txt') as f:
data = json.load(f)
sub_categories_list = data[main_class]
print("SUB CATEGORIES LIST",sub_categories_list)
with open("sub_categories.txt", "w") as f:
no = 1
# print(data[main_class])
for i in data[main_class]:
f.write(str(no)+')'+str(i) + '\n')
no = no+1
sub_categories = Path("sub_categories.txt").read_text()
template2 = '''Given below are the sub classes of {main_class}.
{sub_categories}
You are a text classifier that catergorises the transcript and captions into one sub class whose context match with one sub class and only generate sub class name, Don't give explanation .
Give more importance to Transcript while classifying .
Transcript: {transcript}
Captions: {captions}
Return only the Sub-class answer chosen from list and nothing else
Answer in the format:
Main-class => {main_class}
Sub-class =>
'''
prompt2 = PromptTemplate(template=template2, input_variables=['sub_categories', 'transcript', 'captions','main_class'])
if self.model_name=='mistral':
try:
chain2 = LLMChain(llm=self.llm, prompt=prompt2)
answer = chain2.predict(sub_categories=sub_categories, transcript=transcript, captions=captions,main_class=main_class)
except:
stream = self.client.text_generation(prompt2, **generate_kwargs, stream=True, details=True)
output = ""
for response in stream:
output += response['token'].text
print("Streaming output:", output)
main_class = output.strip()
print("Preprocess Answer",answer)
pattern = r"Sub-class =>\s*(.+)"
match = re.search(pattern, answer)
if match:
sub_class = match.group(1).strip()
else:
sub_class = None
else:
prompt_text2 = template1.format(main_categories=main_categories, transcript=transcript, captions=captions)
response = self.genai_model.generate_content(contents=prompt_text2)
sub_class = response.text
print("Preprocess Answer",sub_class)
print("SUB CLASS",sub_class)
if sub_class not in sub_categories_list:
sub_class = category_class(sub_class,sub_categories_list)
print("POST PROCESSED SUB CLASS",sub_class)
tier_2_index_no = sub_categories_list.index(sub_class) + 1
print("ANSWER:",sub_class)
final_answer = (f"Tier 1 category : IAB{tier_1_index_no} : {main_class}\nTier 2 category : IAB{tier_1_index_no}-{tier_2_index_no} : {sub_class}")
first_video = os.path.join(os.path.dirname(__file__), "American_football_heads_to_India_clip.mp4")
second_video = os.path.join(os.path.dirname(__file__), "PersonalFinance_clip.mp4")
# return final_answer, first_video, second_video
return final_answer
def save_model_choice(self,model_name):
self.model_name = model_name
if self.model_name=='mistral':
print("Setting up Mistral model for Class Selection")
self.setup_mistral_space_model()
else :
print("Setting up Gemini model for Class Selection")
self.setup_gemini_model()
return "Model selected: " + model_name
def launch_interface(self):
css_code = """
.gradio-container {background-color: #FFFFFF;color:#000000;background-size: 200px; background-image:url(https://gitlab.ignitarium.in/saran/logo/-/raw/aab7c77b4816b8a4bbdc5588eb57ce8b6c15c72d/ign_logo_white.png);background-repeat:no-repeat; position:relative; top:1px; left:5px; padding: 50px;text-align: right;background-position: right top;}
"""
css_code += """
:root {
--body-background-fill: #FFFFFF; /* New value */
}
"""
css_code += """
:root {
--body-background-fill: #000000; /* New value */
}
"""
interface_1 = gr.Interface(
self.save_model_choice,
inputs=gr.Dropdown(choices=['gemini', 'mistral'], label="Select Model", info="Default model: Gemini"),
# outputs=interface_1_output,
outputs="text"
)
demo = gr.Interface(fn=self.classify_video, inputs="playablevideo",allow_flagging='never', examples=[
os.path.join(os.path.dirname(__file__),
"American_football_heads_to_India_clip.mp4"),os.path.join(os.path.dirname(__file__), "PersonalFinance_clip.mp4"),
os.path.join(os.path.dirname(__file__), "Motorcycle_clip.mp4"),
os.path.join(os.path.dirname(__file__), "Spirituality_1_clip.mp4"),
os.path.join(os.path.dirname(__file__), "Science_clip.mp4")],
cache_examples=False, outputs=["text"],
css=css_code, title="Interactive Advertising Bureau (IAB) compliant Video-Ad classification")
# demo.launch(debug=True)
gr.TabbedInterface([interface_1, demo], ["Model Selection", "Video Classification"]).launch(debug=True)
def run_inference(self, video_path,model):
result = self.classify_video(video_path)
print(result)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Process some videos.')
parser.add_argument("video_path", nargs='?', default=None, help="Path to the video file")
parser.add_argument("-n", "--no_of_frames", type=int, default=3, help="Number of frames for image captioning")
parser.add_argument("--mode", choices=['interface', 'inference'], default='interface', help="Mode of operation: interface or inference")
parser.add_argument("--model", choices=['gemini','mistral'],default='gemini',help="Model for inference")
args = parser.parse_args()
vc = VideoClassifier(no_of_frames=args.no_of_frames, mode=args.mode , model=args.model)
if args.mode == 'interface':
vc.launch_interface()
elif args.mode == 'inference' and args.video_path and args.model:
vc.run_inference(args.video_path,args.model)
else:
print("Error: No video path/model provided for inference mode.")
#Usage
### python main.py --mode interface
### python main.py videos/Spirituality_1_clip.mp4 -n 3 --mode inference --model gemini
|