Spaces:
Runtime error
Runtime error
File size: 13,176 Bytes
7fd6e1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
import gradio as gr
import os
import whisper
import cv2
import io
from PIL import Image
import json
import tempfile
import torch
import transformers
import re
import time
from torch import cuda, bfloat16
from moviepy.editor import VideoFileClip
from image_caption import Caption
from pathlib import Path
from langchain import PromptTemplate
from langchain import LLMChain
from langchain.llms import HuggingFacePipeline
from difflib import SequenceMatcher
import argparse
import shutil
import google.generativeai as genai
class VideoClassifier:
def __init__(self, no_of_frames, mode='interface'):
self.no_of_frames = no_of_frames
self.mode = mode
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# self.setup_model()
self.setup_paths()
self.setup_gemini_model()
def setup_paths(self):
self.path = './results'
if os.path.exists(self.path):
shutil.rmtree(self.path) # Remove the directory if it exists
os.mkdir(self.path)
def setup_gemini_model(self):
self.genai = genai
self.genai.configure(api_key="AIzaSyAFG94rVbm9eWepO5uPGsMha8XJ-sHbMdA")
self.genai_model = genai.GenerativeModel('gemini-pro')
self.whisper_model = whisper.load_model("base")
self.img_cap = Caption()
def setup_model(self):
self.model_id = "mistralai/Mistral-7B-Instruct-v0.2"
self.device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu'
self.device_name = torch.cuda.get_device_name()
# print(f"Using device: {self.device} ({self.device_name})")
bnb_config = transformers.BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type='nf4',
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=bfloat16
)
hf_auth = hf_key
model_config = transformers.AutoConfig.from_pretrained(
self.model_id,
use_auth_token=hf_auth
)
self.model = transformers.AutoModelForCausalLM.from_pretrained(
self.model_id,
trust_remote_code=True,
config=model_config,
quantization_config=bnb_config,
device_map='auto',
use_auth_token=hf_auth
)
self.model.eval()
self.tokenizer = transformers.AutoTokenizer.from_pretrained(
self.model_id,
use_auth_token=hf_auth
)
self.generate_text = transformers.pipeline(
model=self.model, tokenizer=self.tokenizer,
return_full_text=True,
task='text-generation',
temperature=0.01,
max_new_tokens=32
)
self.whisper_model = whisper.load_model("base")
self.img_cap = Caption()
self.llm = HuggingFacePipeline(pipeline=self.generate_text)
def classify_video(self, video_input):
print(f"Processing video: {video_input} with {self.no_of_frames} frames.")
start = time.time()
mp4_file = video_input
video_name = mp4_file.split("/")[-1]
wav_file = "results/audiotrack.wav"
video_clip = VideoFileClip(mp4_file)
audioclip = video_clip.audio
wav_file = audioclip.write_audiofile(wav_file)
audioclip.close()
video_clip.close()
audiotrack = "results/audiotrack.wav"
result = self.whisper_model.transcribe(audiotrack, fp16=False)
transcript = result["text"]
print("TRANSCRIPT",transcript)
# print("####transcript length:", len(transcript))
end = time.time()
time_taken_1 = round(end - start, 3)
# print("Time taken from video to transcript:", time_taken_1)
video = cv2.VideoCapture(video_input)
length = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
no_of_frame = int(self.no_of_frames)
temp_div = length // no_of_frame
currentframe = 50
caption_text = []
for i in range(no_of_frame):
video.set(cv2.CAP_PROP_POS_FRAMES, currentframe)
ret, frame = video.read()
if ret:
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
image = Image.fromarray(frame)
# img_byte_arr = io.BytesIO()
# image.save(img_byte_arr, format='JPEG') # Save as JPEG or any other format your model supports
# img_byte_arr.seek(0)
content = self.img_cap.predict_image_caption_gemini(image)
print("content", content)
caption_text.append(content[0])
currentframe += temp_div - 1
else:
break
captions = ", ".join(caption_text)
print("CAPTIONS", captions)
video.release()
cv2.destroyAllWindows()
main_categories = Path("main_classes.txt").read_text()
main_categories_list = ['Automotive', 'Books and Literature', 'Business and Finance', 'Careers', 'Education','Family and Relationships',
'Fine Art', 'Food & Drink', 'Healthy Living', 'Hobbies & Interests', 'Home & Garden','Medical Health', 'Movies', 'Music and Audio',
'News and Politics', 'Personal Finance', 'Pets', 'Pop Culture','Real Estate', 'Religion & Spirituality', 'Science', 'Shopping', 'Sports',
'Style & Fashion','Technology & Computing', 'Television', 'Travel', 'Video Gaming']
template1 = '''Given below are the different type of main video classes
{main_categories}
You are a text classifier that catergorises the transcript and captions into one main class whose context match with one main class and only generate main class name no need of sub classe or explanation.
Give more importance to Transcript while classifying .
Transcript: {transcript}
Captions: {captions}
Return only the answer chosen from list and nothing else
Main-class => '''
prompt1 = PromptTemplate(template=template1, input_variables=['main_categories', 'transcript', 'captions'])
print("PROMPT 1",prompt1)
prompt_text = template1.format(main_categories=main_categories, transcript=transcript, captions=captions)
response = self.genai_model.generate_content(contents=prompt_text)
main_class = response.text
print(main_class)
print("#######################################################")
# pattern = r"Main-class =>\s*(.+)"
# match = re.search(pattern, main_class)
# if match:
# main_class = match.group(1).strip()
# else:
# main_class = None
# print("MAIN CLASS: ",main_class)
def category_class(class_name,categories_list):
def similar(str1, str2):
return SequenceMatcher(None, str1, str2).ratio()
index_no = 0
sim = 0
for sub in categories_list:
res = similar(class_name, sub)
if res>sim:
sim = res
index_no = categories_list.index(sub)
class_name = categories_list[index_no]
return class_name
if main_class not in main_categories_list:
main_class = category_class(main_class,main_categories_list)
print("POST PROCESSED MAIN CLASS : ",main_class)
tier_1_index_no = main_categories_list.index(main_class) + 1
with open('categories_json.txt') as f:
data = json.load(f)
sub_categories_list = data[main_class]
print("SUB CATEGORIES LIST",sub_categories_list)
with open("sub_categories.txt", "w") as f:
no = 1
# print(data[main_class])
for i in data[main_class]:
f.write(str(no)+')'+str(i) + '\n')
no = no+1
sub_categories = Path("sub_categories.txt").read_text()
template2 = '''Given below are the sub classes of {main_class}.
{sub_categories}
You are a text classifier that catergorises the transcript and captions into one sub class whose context match with one sub class and only generate sub class name, Don't give explanation .
Give more importance to Transcript while classifying .
Transcript: {transcript}
Captions: {captions}
Return only the Sub-class answer chosen from list and nothing else
Answer in the format:
Main-class => {main_class}
Sub-class =>
'''
prompt2 = PromptTemplate(template=template2, input_variables=['sub_categories', 'transcript', 'captions','main_class'])
prompt_text2 = template1.format(main_categories=main_categories, transcript=transcript, captions=captions)
response = self.genai_model.generate_content(contents=prompt_text2)
sub_class = response.text
print("Preprocess Answer",sub_class)
# print("Time taken by model to predict:", time_taken_predict)
# print("Total time taken:", time_taken_total)
# pattern = r"Sub-class =>\s*(.+)"
# match = re.search(pattern, sub_class)
# if match:
# sub_class = match.group(1).strip()
# else:
# sub_class = None
# print("SUB CLASS",sub_class)
if sub_class not in sub_categories_list:
sub_class = category_class(sub_class,sub_categories_list)
print("POST PROCESSED SUB CLASS",sub_class)
tier_2_index_no = sub_categories_list.index(sub_class) + 1
print("ANSWER:",sub_class)
final_answer = (f"Tier 1 category : IAB{tier_1_index_no} : {main_class}\nTier 2 category : IAB{tier_1_index_no}-{tier_2_index_no} : {sub_class}")
first_video = os.path.join(os.path.dirname(__file__), "American_football_heads_to_India_clip.mp4")
second_video = os.path.join(os.path.dirname(__file__), "PersonalFinance_clip.mp4")
# return final_answer, first_video, second_video
return final_answer
# .gradio-container-4-1-2 .prose h1 {color:#FFFFFF !important }
# .body {background-color: #000000 !important}
# @media screen and (max-width: 1500px) {
# .gradio-container-4-1-2 .prose h1 {color:#FFFFFF !important; margin-top: 6%}
# }
# .built-with svelte-mpyp5e {visibility:hidden}
# .show-api svelte-mpyp5e {visibility:hidden}
def launch_interface(self):
css_code = """
.gradio-container {background-color: #FFFFFF;color:#000000;background-size: 200px; background-image:url(https://gitlab.ignitarium.in/saran/logo/-/raw/aab7c77b4816b8a4bbdc5588eb57ce8b6c15c72d/ign_logo_white.png);background-repeat:no-repeat; position:relative; top:1px; left:5px; padding: 50px;text-align: right;background-position: right top;}
"""
css_code += """
:root {
--body-background-fill: #FFFFFF; /* New value */
}
"""
demo = gr.Interface(fn=self.classify_video, inputs="playablevideo",allow_flagging='never', examples=[
os.path.join(os.path.dirname(__file__),
"American_football_heads_to_India_clip.mp4"),os.path.join(os.path.dirname(__file__), "PersonalFinance_clip.mp4"),
os.path.join(os.path.dirname(__file__), "Motorcycle_clip.mp4"),
os.path.join(os.path.dirname(__file__), "Spirituality_1_clip.mp4"),
os.path.join(os.path.dirname(__file__), "Science_clip.mp4")],
cache_examples=False,
# outputs=["text", gr.Video(height=80, width=120), gr.Video(height=80, width=120)],
outputs=["text"],
css=css_code,
title="Interactive Advertising Bureau (IAB) compliant Video-Ad classification"
)
demo.launch(debug=True)
def run_inference(self, video_path):
result = self.classify_video(video_path)
print(result)
if __name__ == "__main__":
vc = VideoClassifier(no_of_frames=3, mode='interface')
vc.launch_interface()
# parser = argparse.ArgumentParser(description='Process some videos.')
# parser.add_argument("video_path", nargs='?', default=None, help="Path to the video file")
# parser.add_argument("-n", "--no_of_frames", type=int, default=8, help="Number of frames for image captioning")
# parser.add_argument("--mode", choices=['interface', 'inference'], default='interface', help="Mode of operation: interface or inference")
# args = parser.parse_args()
# vc = VideoClassifier(no_of_frames=args.no_of_frames, mode=args.mode)
# if args.mode == 'interface':
# vc.launch_interface()
# elif args.mode == 'inference' and args.video_path:
# vc.run_inference(args.video_path)
# else:
# print("Error: No video path provided for inference mode.")
### python main.py --mode interface
### python main.py videos/Spirituality_1_clip.mp4 -n 3 --mode inference
|