File size: 1,945 Bytes
fe0246c
8bc3f30
fe0246c
 
 
8bc3f30
fe0246c
 
 
 
 
 
 
58d0a5e
e7ce40a
fe0246c
e7ce40a
 
fe0246c
 
 
 
e7ce40a
 
 
 
 
 
fe0246c
e7ce40a
 
 
 
 
fe0246c
e7ce40a
 
 
 
fe0246c
 
 
e7ce40a
 
 
 
d75400e
e7ce40a
 
 
 
 
 
d75400e
e7ce40a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import streamlit as st
from transformers import pipeline
from PIL import Image
import tempfile
import fitz  # PyMuPDF

# Load the model
@st.cache_resource
def load_model():
    return pipeline("document-question-answering", model="impira/layoutlm-document-qa")

qa_pipeline = load_model()

st.title("📄 Document Question Answering App")
st.write("Upload a PDF or Image file, enter a question, and get answers from the document.")

# Upload PDF or image
uploaded_file = st.file_uploader("Upload PDF or Image", type=["pdf", "png", "jpg", "jpeg"])

# Ask a question
question = st.text_input("Ask a question about the document:")

if uploaded_file and question:
    # Handle PDF file
    if uploaded_file.type == "application/pdf":
        with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_file:
            tmp_file.write(uploaded_file.read())
            pdf_path = tmp_file.name

        doc = fitz.open(pdf_path)
        page = doc.load_page(0)  # just first page for now
        pix = page.get_pixmap(dpi=150)
        img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
        st.image(img, caption="Page 1 of PDF")

    # Handle image file
    else:
        img = Image.open(uploaded_file)
        st.image(img, caption="Uploaded Image")

    # Run the pipeline
    with st.spinner("Searching for the answer..."):
        results = qa_pipeline(img, question)

        if results:
            top_answer = results[0]  # get the highest-scoring answer
            st.success(f"**Answer:** {top_answer['answer']} (score: {top_answer['score']:.2f})")

            # Show top 3 options if available
            if len(results) > 1:
                st.markdown("\n**Other possible answers:**")
                for idx, ans in enumerate(results[1:3], start=2):
                    st.markdown(f"- Option {idx}: {ans['answer']} (score: {ans['score']:.2f})")
        else:
            st.warning("No answer found.")