File size: 24,651 Bytes
95ba5bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88b37fb
95ba5bc
 
 
 
 
 
 
 
88b37fb
95ba5bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88b37fb
 
95ba5bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88b37fb
 
 
 
95ba5bc
 
 
 
 
88b37fb
 
 
 
 
 
95ba5bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88b37fb
95ba5bc
 
 
 
 
 
 
 
88b37fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
import math
import numpy as np
import torch
import torch.nn as nn

from src import utils
from pdb import set_trace


class GCL(nn.Module):
    def __init__(self, input_nf, output_nf, hidden_nf, normalization_factor, aggregation_method, activation,
                 edges_in_d=0, nodes_att_dim=0, attention=False, normalization=None):
        super(GCL, self).__init__()
        input_edge = input_nf * 2
        self.normalization_factor = normalization_factor
        self.aggregation_method = aggregation_method
        self.attention = attention

        self.edge_mlp = nn.Sequential(
            nn.Linear(input_edge + edges_in_d, hidden_nf),
            activation,
            nn.Linear(hidden_nf, hidden_nf),
            activation)

        if normalization is None:
            self.node_mlp = nn.Sequential(
                nn.Linear(hidden_nf + input_nf + nodes_att_dim, hidden_nf),
                activation,
                nn.Linear(hidden_nf, output_nf)
            )
        elif normalization == 'batch_norm':
            self.node_mlp = nn.Sequential(
                nn.Linear(hidden_nf + input_nf + nodes_att_dim, hidden_nf),
                nn.BatchNorm1d(hidden_nf),
                activation,
                nn.Linear(hidden_nf, output_nf),
                nn.BatchNorm1d(output_nf),
            )
        else:
            raise NotImplementedError

        if self.attention:
            self.att_mlp = nn.Sequential(nn.Linear(hidden_nf, 1), nn.Sigmoid())

    def edge_model(self, source, target, edge_attr, edge_mask):
        if edge_attr is None:  # Unused.
            out = torch.cat([source, target], dim=1)
        else:
            out = torch.cat([source, target, edge_attr], dim=1)
        mij = self.edge_mlp(out)

        if self.attention:
            att_val = self.att_mlp(mij)
            out = mij * att_val
        else:
            out = mij

        if edge_mask is not None:
            out = out * edge_mask
        return out, mij

    def node_model(self, x, edge_index, edge_attr, node_attr):
        row, col = edge_index
        agg = unsorted_segment_sum(edge_attr, row, num_segments=x.size(0),
                                   normalization_factor=self.normalization_factor,
                                   aggregation_method=self.aggregation_method)
        if node_attr is not None:
            agg = torch.cat([x, agg, node_attr], dim=1)
        else:
            agg = torch.cat([x, agg], dim=1)
        out = x + self.node_mlp(agg)
        return out, agg

    def forward(self, h, edge_index, edge_attr=None, node_attr=None, node_mask=None, edge_mask=None):
        row, col = edge_index
        edge_feat, mij = self.edge_model(h[row], h[col], edge_attr, edge_mask)
        h, agg = self.node_model(h, edge_index, edge_feat, node_attr)
        if node_mask is not None:
            h = h * node_mask
        return h, mij


class EquivariantUpdate(nn.Module):
    def __init__(self, hidden_nf, normalization_factor, aggregation_method,
                 edges_in_d=1, activation=nn.SiLU(), tanh=False, coords_range=10.0):
        super(EquivariantUpdate, self).__init__()
        self.tanh = tanh
        self.coords_range = coords_range
        input_edge = hidden_nf * 2 + edges_in_d
        layer = nn.Linear(hidden_nf, 1, bias=False)
        torch.nn.init.xavier_uniform_(layer.weight, gain=0.001)
        self.coord_mlp = nn.Sequential(
            nn.Linear(input_edge, hidden_nf),
            activation,
            nn.Linear(hidden_nf, hidden_nf),
            activation,
            layer)
        self.normalization_factor = normalization_factor
        self.aggregation_method = aggregation_method

    def coord_model(self, h, coord, edge_index, coord_diff, edge_attr, edge_mask, linker_mask):
        row, col = edge_index
        input_tensor = torch.cat([h[row], h[col], edge_attr], dim=1)
        if self.tanh:
            trans = coord_diff * torch.tanh(self.coord_mlp(input_tensor)) * self.coords_range
        else:
            trans = coord_diff * self.coord_mlp(input_tensor)
        if edge_mask is not None:
            trans = trans * edge_mask
        agg = unsorted_segment_sum(trans, row, num_segments=coord.size(0),
                                   normalization_factor=self.normalization_factor,
                                   aggregation_method=self.aggregation_method)
        if linker_mask is not None:
            agg = agg * linker_mask

        coord = coord + agg
        return coord

    def forward(
            self, h, coord, edge_index, coord_diff, edge_attr=None, linker_mask=None, node_mask=None, edge_mask=None
    ):
        coord = self.coord_model(h, coord, edge_index, coord_diff, edge_attr, edge_mask, linker_mask)
        if node_mask is not None:
            coord = coord * node_mask
        return coord


class EquivariantBlock(nn.Module):
    def __init__(self, hidden_nf, edge_feat_nf=2, device='cpu', activation=nn.SiLU(), n_layers=2, attention=True,
                 norm_diff=True, tanh=False, coords_range=15, norm_constant=1, sin_embedding=None,
                 normalization_factor=100, aggregation_method='sum'):
        super(EquivariantBlock, self).__init__()
        self.hidden_nf = hidden_nf
        self.device = device
        self.n_layers = n_layers
        self.coords_range_layer = float(coords_range)
        self.norm_diff = norm_diff
        self.norm_constant = norm_constant
        self.sin_embedding = sin_embedding
        self.normalization_factor = normalization_factor
        self.aggregation_method = aggregation_method

        for i in range(0, n_layers):
            self.add_module("gcl_%d" % i, GCL(self.hidden_nf, self.hidden_nf, self.hidden_nf, edges_in_d=edge_feat_nf,
                                              activation=activation, attention=attention,
                                              normalization_factor=self.normalization_factor,
                                              aggregation_method=self.aggregation_method))
        self.add_module("gcl_equiv", EquivariantUpdate(hidden_nf, edges_in_d=edge_feat_nf, activation=activation, tanh=tanh,
                                                       coords_range=self.coords_range_layer,
                                                       normalization_factor=self.normalization_factor,
                                                       aggregation_method=self.aggregation_method))
        self.to(self.device)

    def forward(self, h, x, edge_index, node_mask=None, linker_mask=None, edge_mask=None, edge_attr=None):
        # Edit Emiel: Remove velocity as input
        distances, coord_diff = coord2diff(x, edge_index, self.norm_constant)
        if self.sin_embedding is not None:
            distances = self.sin_embedding(distances)
        edge_attr = torch.cat([distances, edge_attr], dim=1)
        for i in range(0, self.n_layers):
            h, _ = self._modules["gcl_%d" % i](h, edge_index, edge_attr=edge_attr, node_mask=node_mask, edge_mask=edge_mask)
        x = self._modules["gcl_equiv"](
            h, x,
            edge_index=edge_index,
            coord_diff=coord_diff,
            edge_attr=edge_attr,
            linker_mask=linker_mask,
            node_mask=node_mask,
            edge_mask=edge_mask,
        )

        # Important, the bias of the last linear might be non-zero
        if node_mask is not None:
            h = h * node_mask
        return h, x


class EGNN(nn.Module):
    def __init__(self, in_node_nf, in_edge_nf, hidden_nf, device='cpu', activation=nn.SiLU(), n_layers=3, attention=False,
                 norm_diff=True, out_node_nf=None, tanh=False, coords_range=15, norm_constant=1, inv_sublayers=2,
                 sin_embedding=False, normalization_factor=100, aggregation_method='sum'):
        super(EGNN, self).__init__()
        if out_node_nf is None:
            out_node_nf = in_node_nf
        self.hidden_nf = hidden_nf
        self.device = device
        self.n_layers = n_layers
        self.coords_range_layer = float(coords_range/n_layers)
        self.norm_diff = norm_diff
        self.normalization_factor = normalization_factor
        self.aggregation_method = aggregation_method

        if sin_embedding:
            self.sin_embedding = SinusoidsEmbeddingNew()
            edge_feat_nf = self.sin_embedding.dim * 2
        else:
            self.sin_embedding = None
            edge_feat_nf = 2

        self.embedding = nn.Linear(in_node_nf, self.hidden_nf)
        self.embedding_out = nn.Linear(self.hidden_nf, out_node_nf)
        for i in range(0, n_layers):
            self.add_module("e_block_%d" % i, EquivariantBlock(hidden_nf, edge_feat_nf=edge_feat_nf, device=device,
                                                               activation=activation, n_layers=inv_sublayers,
                                                               attention=attention, norm_diff=norm_diff, tanh=tanh,
                                                               coords_range=coords_range, norm_constant=norm_constant,
                                                               sin_embedding=self.sin_embedding,
                                                               normalization_factor=self.normalization_factor,
                                                               aggregation_method=self.aggregation_method))
        self.to(self.device)

    def forward(self, h, x, edge_index, node_mask=None, linker_mask=None, edge_mask=None):
        # Edit Emiel: Remove velocity as input
        distances, _ = coord2diff(x, edge_index)
        if self.sin_embedding is not None:
            distances = self.sin_embedding(distances)

        h = self.embedding(h)
        for i in range(0, self.n_layers):
            h, x = self._modules["e_block_%d" % i](
                h, x, edge_index,
                node_mask=node_mask,
                linker_mask=linker_mask,
                edge_mask=edge_mask,
                edge_attr=distances
            )

        # Important, the bias of the last linear might be non-zero
        h = self.embedding_out(h)
        if node_mask is not None:
            h = h * node_mask
        return h, x


class GNN(nn.Module):
    def __init__(self, in_node_nf, in_edge_nf, hidden_nf, aggregation_method='sum', device='cpu',
                 activation=nn.SiLU(), n_layers=4, attention=False, normalization_factor=1,
                 out_node_nf=None, normalization=None):
        super(GNN, self).__init__()
        if out_node_nf is None:
            out_node_nf = in_node_nf
        self.hidden_nf = hidden_nf
        self.device = device
        self.n_layers = n_layers

        # Encoder
        self.embedding = nn.Linear(in_node_nf, self.hidden_nf)
        self.embedding_out = nn.Linear(self.hidden_nf, out_node_nf)
        for i in range(0, n_layers):
            self.add_module("gcl_%d" % i, GCL(
                self.hidden_nf, self.hidden_nf, self.hidden_nf,
                normalization_factor=normalization_factor,
                aggregation_method=aggregation_method,
                edges_in_d=in_edge_nf, activation=activation,
                attention=attention, normalization=normalization))
        self.to(self.device)

    def forward(self, h, edges, edge_attr=None, node_mask=None, edge_mask=None):
        # Edit Emiel: Remove velocity as input
        h = self.embedding(h)
        for i in range(0, self.n_layers):
            h, _ = self._modules["gcl_%d" % i](h, edges, edge_attr=edge_attr, node_mask=node_mask, edge_mask=edge_mask)
        h = self.embedding_out(h)

        # Important, the bias of the last linear might be non-zero
        if node_mask is not None:
            h = h * node_mask
        return h


class SinusoidsEmbeddingNew(nn.Module):
    def __init__(self, max_res=15., min_res=15. / 2000., div_factor=4):
        super().__init__()
        self.n_frequencies = int(math.log(max_res / min_res, div_factor)) + 1
        self.frequencies = 2 * math.pi * div_factor ** torch.arange(self.n_frequencies)/max_res
        self.dim = len(self.frequencies) * 2

    def forward(self, x):
        x = torch.sqrt(x + 1e-8)
        emb = x * self.frequencies[None, :].to(x.device)
        emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
        return emb.detach()


def coord2diff(x, edge_index, norm_constant=1):
    row, col = edge_index
    coord_diff = x[row] - x[col]
    radial = torch.sum((coord_diff) ** 2, 1).unsqueeze(1)
    norm = torch.sqrt(radial + 1e-8)
    coord_diff = coord_diff/(norm + norm_constant)
    return radial, coord_diff


def unsorted_segment_sum(data, segment_ids, num_segments, normalization_factor, aggregation_method: str):
    """Custom PyTorch op to replicate TensorFlow's `unsorted_segment_sum`.
        Normalization: 'sum' or 'mean'.
    """
    result_shape = (num_segments, data.size(1))
    result = data.new_full(result_shape, 0)  # Init empty result tensor.
    segment_ids = segment_ids.unsqueeze(-1).expand(-1, data.size(1))
    result.scatter_add_(0, segment_ids, data)
    if aggregation_method == 'sum':
        result = result / normalization_factor

    if aggregation_method == 'mean':
        norm = data.new_zeros(result.shape)
        norm.scatter_add_(0, segment_ids, data.new_ones(data.shape))
        norm[norm == 0] = 1
        result = result / norm
    return result


class Dynamics(nn.Module):
    def __init__(
            self, n_dims, in_node_nf, context_node_nf, hidden_nf=64, device='cpu', activation=nn.SiLU(),
            n_layers=4, attention=False, condition_time=True, tanh=False, norm_constant=0, inv_sublayers=2,
            sin_embedding=False, normalization_factor=100, aggregation_method='sum', model='egnn_dynamics',
            normalization=None, centering=False, graph_type='FC',
    ):
        super().__init__()
        self.device = device
        self.n_dims = n_dims
        self.context_node_nf = context_node_nf
        self.condition_time = condition_time
        self.model = model
        self.centering = centering
        self.graph_type = graph_type

        in_node_nf = in_node_nf + context_node_nf + condition_time
        if self.model == 'egnn_dynamics':
            self.dynamics = EGNN(
                in_node_nf=in_node_nf,
                in_edge_nf=1,
                hidden_nf=hidden_nf, device=device,
                activation=activation,
                n_layers=n_layers,
                attention=attention,
                tanh=tanh,
                norm_constant=norm_constant,
                inv_sublayers=inv_sublayers,
                sin_embedding=sin_embedding,
                normalization_factor=normalization_factor,
                aggregation_method=aggregation_method,
            )
        elif self.model == 'gnn_dynamics':
            self.dynamics = GNN(
                in_node_nf=in_node_nf+3,
                in_edge_nf=0,
                hidden_nf=hidden_nf,
                out_node_nf=in_node_nf+3,
                device=device,
                activation=activation,
                n_layers=n_layers,
                attention=attention,
                normalization_factor=normalization_factor,
                aggregation_method=aggregation_method,
                normalization=normalization,
            )
        else:
            raise NotImplementedError

        self.edge_cache = {}

    def forward(self, t, xh, node_mask, linker_mask, edge_mask, context):
        """
        - t: (B)
        - xh: (B, N, D), where D = 3 + nf
        - node_mask: (B, N, 1)
        - edge_mask: (B*N*N, 1)
        - context: (B, N, C)
        """

        assert self.graph_type == 'FC'

        bs, n_nodes = xh.shape[0], xh.shape[1]
        edges = self.get_edges(n_nodes, bs)  # (2, B*N)
        node_mask = node_mask.view(bs * n_nodes, 1)  # (B*N, 1)

        if linker_mask is not None:
            linker_mask = linker_mask.view(bs * n_nodes, 1)  # (B*N, 1)

        # Reshaping node features & adding time feature
        xh = xh.view(bs * n_nodes, -1).clone() * node_mask  # (B*N, D)
        x = xh[:, :self.n_dims].clone()  # (B*N, 3)
        h = xh[:, self.n_dims:].clone()  # (B*N, nf)
        if self.condition_time:
            if np.prod(t.size()) == 1:
                # t is the same for all elements in batch.
                h_time = torch.empty_like(h[:, 0:1]).fill_(t.item())
            else:
                # t is different over the batch dimension.
                h_time = t.view(bs, 1).repeat(1, n_nodes)
                h_time = h_time.view(bs * n_nodes, 1)
            h = torch.cat([h, h_time], dim=1)  # (B*N, nf+1)
        if context is not None:
            context = context.view(bs*n_nodes, self.context_node_nf)
            h = torch.cat([h, context], dim=1)

        # Forward EGNN
        # Output: h_final (B*N, nf), x_final (B*N, 3), vel (B*N, 3)
        if self.model == 'egnn_dynamics':
            h_final, x_final = self.dynamics(
                h,
                x,
                edges,
                node_mask=node_mask,
                linker_mask=linker_mask,
                edge_mask=edge_mask
            )
            vel = (x_final - x) * node_mask  # This masking operation is redundant but just in case
        elif self.model == 'gnn_dynamics':
            xh = torch.cat([x, h], dim=1)
            output = self.dynamics(xh, edges, node_mask=node_mask)
            vel = output[:, 0:3] * node_mask
            h_final = output[:, 3:]
        else:
            raise NotImplementedError

        # Slice off context size
        if context is not None:
            h_final = h_final[:, :-self.context_node_nf]

        # Slice off last dimension which represented time.
        if self.condition_time:
            h_final = h_final[:, :-1]

        vel = vel.view(bs, n_nodes, -1)  # (B, N, 3)
        h_final = h_final.view(bs, n_nodes, -1)  # (B, N, D)
        node_mask = node_mask.view(bs, n_nodes, 1)  # (B, N, 1)

        if self.centering:
            vel = utils.remove_mean_with_mask(vel, node_mask)

        return torch.cat([vel, h_final], dim=2)

    def get_edges(self, n_nodes, batch_size):
        if n_nodes in self.edge_cache:
            edges_dic_b = self.edge_cache[n_nodes]
            if batch_size in edges_dic_b:
                return edges_dic_b[batch_size]
            else:
                # get edges for a single sample
                rows, cols = [], []
                for batch_idx in range(batch_size):
                    for i in range(n_nodes):
                        for j in range(n_nodes):
                            rows.append(i + batch_idx * n_nodes)
                            cols.append(j + batch_idx * n_nodes)
                edges = [torch.LongTensor(rows).to(self.device), torch.LongTensor(cols).to(self.device)]
                edges_dic_b[batch_size] = edges
                return edges
        else:
            self.edge_cache[n_nodes] = {}
            return self.get_edges(n_nodes, batch_size)


class DynamicsWithPockets(Dynamics):
    def forward(self, t, xh, node_mask, linker_mask, edge_mask, context):
        """
        - t: (B)
        - xh: (B, N, D), where D = 3 + nf
        - node_mask: (B, N, 1)
        - edge_mask: (B*N*N, 1)
        - context: (B, N, C)
        """

        bs, n_nodes = xh.shape[0], xh.shape[1]
        node_mask = node_mask.view(bs * n_nodes, 1)  # (B*N, 1)

        if linker_mask is not None:
            linker_mask = linker_mask.view(bs * n_nodes, 1)  # (B*N, 1)

        fragment_only_mask = context[..., -2].view(bs * n_nodes, 1)  # (B*N, 1)
        pocket_only_mask = context[..., -1].view(bs * n_nodes, 1)  # (B*N, 1)
        assert torch.all(fragment_only_mask.bool() | pocket_only_mask.bool() | linker_mask.bool() == node_mask.bool())

        # Reshaping node features & adding time feature
        xh = xh.view(bs * n_nodes, -1).clone() * node_mask  # (B*N, D)
        x = xh[:, :self.n_dims].clone()  # (B*N, 3)
        h = xh[:, self.n_dims:].clone()  # (B*N, nf)

        assert self.graph_type in ['4A', 'FC-4A', 'FC-10A-4A']
        if self.graph_type == '4A' or self.graph_type is None:
            edges = self.get_dist_edges_4A(x, node_mask, edge_mask)
        else:
            edges = self.get_dist_edges(x, node_mask, edge_mask, linker_mask, fragment_only_mask, pocket_only_mask)

        if self.condition_time:
            if np.prod(t.size()) == 1:
                # t is the same for all elements in batch.
                h_time = torch.empty_like(h[:, 0:1]).fill_(t.item())
            else:
                # t is different over the batch dimension.
                h_time = t.view(bs, 1).repeat(1, n_nodes)
                h_time = h_time.view(bs * n_nodes, 1)
            h = torch.cat([h, h_time], dim=1)  # (B*N, nf+1)
        if context is not None:
            context = context.view(bs*n_nodes, self.context_node_nf)
            h = torch.cat([h, context], dim=1)

        # Forward EGNN
        # Output: h_final (B*N, nf), x_final (B*N, 3), vel (B*N, 3)
        if self.model == 'egnn_dynamics':
            h_final, x_final = self.dynamics(
                h,
                x,
                edges,
                node_mask=node_mask,
                linker_mask=linker_mask,
                edge_mask=None
            )
            vel = (x_final - x) * node_mask  # This masking operation is redundant but just in case
        elif self.model == 'gnn_dynamics':
            xh = torch.cat([x, h], dim=1)
            output = self.dynamics(xh, edges, node_mask=node_mask)
            vel = output[:, 0:3] * node_mask
            h_final = output[:, 3:]
        else:
            raise NotImplementedError

        # Slice off context size
        if context is not None:
            h_final = h_final[:, :-self.context_node_nf]

        # Slice off last dimension which represented time.
        if self.condition_time:
            h_final = h_final[:, :-1]

        vel = vel.view(bs, n_nodes, -1)  # (B, N, 3)
        h_final = h_final.view(bs, n_nodes, -1)  # (B, N, D)
        node_mask = node_mask.view(bs, n_nodes, 1)  # (B, N, 1)

        if torch.any(torch.isnan(vel)) or torch.any(torch.isnan(h_final)):
            raise utils.FoundNaNException(vel, h_final)

        if self.centering:
            vel = utils.remove_mean_with_mask(vel, node_mask)

        return torch.cat([vel, h_final], dim=2)

    @staticmethod
    def get_dist_edges_4A(x, node_mask, batch_mask):
        node_mask = node_mask.squeeze().bool()
        batch_adj = (batch_mask[:, None] == batch_mask[None, :])
        nodes_adj = (node_mask[:, None] & node_mask[None, :])
        dists_adj = (torch.cdist(x, x) <= 4)
        rm_self_loops = ~torch.eye(x.size(0), dtype=torch.bool, device=x.device)
        adj = batch_adj & nodes_adj & dists_adj & rm_self_loops
        edges = torch.stack(torch.where(adj))
        return edges

    def get_dist_edges(self, x, node_mask, batch_mask, linker_mask, fragment_only_mask, pocket_only_mask):
        node_mask = node_mask.squeeze().bool()
        linker_mask = linker_mask.squeeze().bool() & node_mask
        fragment_only_mask = fragment_only_mask.squeeze().bool() & node_mask
        pocket_only_mask = pocket_only_mask.squeeze().bool() & node_mask
        ligand_mask = linker_mask | fragment_only_mask

        # General constrains:
        batch_adj = (batch_mask[:, None] == batch_mask[None, :])
        nodes_adj = (node_mask[:, None] & node_mask[None, :])
        rm_self_loops = ~torch.eye(x.size(0), dtype=torch.bool, device=x.device)
        constraints = batch_adj & nodes_adj & rm_self_loops

        # Ligand atoms – fully-connected graph
        ligand_adj = (ligand_mask[:, None] & ligand_mask[None, :])
        ligand_interactions = ligand_adj & constraints

        # Pocket atoms - within 4A
        pocket_adj = (pocket_only_mask[:, None] & pocket_only_mask[None, :])
        pocket_dists_adj = (torch.cdist(x, x) <= 4)
        pocket_interactions = pocket_adj & pocket_dists_adj & constraints

        # Pocket-ligand atoms - within 10A
        pocket_ligand_cutoff = 4 if self.graph_type == 'FC-4A' else 10
        pocket_ligand_adj = (ligand_mask[:, None] & pocket_only_mask[None, :])
        pocket_ligand_adj = pocket_ligand_adj | (pocket_only_mask[:, None] & ligand_mask[None, :])
        pocket_ligand_dists_adj = (torch.cdist(x, x) <= pocket_ligand_cutoff)
        pocket_ligand_interactions = pocket_ligand_adj & pocket_ligand_dists_adj & constraints

        adj = ligand_interactions | pocket_interactions | pocket_ligand_interactions
        edges = torch.stack(torch.where(adj))
        return edges