File size: 5,550 Bytes
c298f18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cd7c47
c298f18
 
 
 
 
 
27aa20b
7f8b190
c298f18
556dab2
c298f18
 
 
 
 
 
3cd7c47
c298f18
3cd7c47
c298f18
 
 
 
 
3cd7c47
c298f18
3cd7c47
c298f18
 
 
 
 
3cd7c47
c298f18
3cd7c47
c298f18
 
 
 
 
 
 
 
3cd7c47
c298f18
 
 
 
 
 
3cd7c47
c298f18
3cd7c47
c298f18
 
 
 
 
 
3cd7c47
c298f18
3cd7c47
c298f18
 
 
 
 
 
 
 
 
 
 
 
7b56fcc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import gradio as gr 
from lavis.models import load_model_and_preprocess
import torch

device = torch.device("cuda") if torch.cuda.is_available() else "cpu"

model_name = "blip2_t5_instruct"
model_type = "flant5xl"
model, vis_processors, _ = load_model_and_preprocess(
    name=model_name,
    model_type=model_type,
    is_eval=True,
    device=device
)

def infer(image, prompt, min_len, max_len, beam_size, len_penalty, repetition_penalty, top_p, decoding_method):
        use_nucleus_sampling = decoding_method == "Nucleus sampling"
        image = vis_processors["eval"](image).unsqueeze(0).to(device)

        samples = {
            "image": image,
            "prompt": prompt,
        }

        output = model.generate(
            samples,
            length_penalty=float(len_penalty),
            repetition_penalty=float(repetition_penalty),
            num_beams=beam_size,
            max_length=max_len,
            min_length=min_len,
            top_p=top_p,
            use_nucleus_sampling=use_nucleus_sampling
        )

        return output[0]
    
theme = gr.themes.Monochrome(
    primary_hue="indigo",
    secondary_hue="blue",
    neutral_hue="slate",
    radius_size=gr.themes.sizes.radius_sm,
    font=[gr.themes.GoogleFont("Open Sans"), "ui-sans-serif", "system-ui", "sans-serif"],
)
css = ".generating {visibility: hidden}"

examples = [
["banff.jpg", "Can you tell me about this image in detail", 1, 200, 5, 1, 3, 0.9, "Beam search"]
]
with gr.Blocks(theme=theme, analytics_enabled=False,css=css) as demo:
    gr.Markdown("## InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning")
    gr.Markdown(
            """
            Unofficial demo for InstructBLIP. InstructBLIP is a new vision-language instruction-tuning framework by Salesforce that uses BLIP-2 models, achieving state-of-the-art zero-shot generalization performance on a wide range of vision-language tasks.
            The demo is based on the official <a href="https://github.com/salesforce/LAVIS/tree/main/projects/instructblip" style="text-decoration: underline;" target="_blank"> Github </a> implementation
            """
        )
    gr.HTML("<p>You can duplicate this Space to run it privately without a queue for shorter queue times  : <a style='display:inline-block' href='https://huggingface.co/spaces/RamAnanth1/InstructBLIP?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14' alt='Duplicate Space'></a> </p>")

    with gr.Row():
        with gr.Column(scale=3):
            image_input = gr.Image(type="pil")
            prompt_textbox = gr.Textbox(label="Prompt:", placeholder="prompt", value="Please describe what you see.", lines=2)
            output = gr.Textbox(label="Output")
            submit = gr.Button("Run", variant="primary")

        with gr.Column(scale=1):
            min_len = gr.Slider(
                minimum=1,
                maximum=100,
                value=25,
                step=1,
                interactive=False,
                label="Min Length",
            )
        
            max_len = gr.Slider(
                minimum=10,
                maximum=500,
                value=500,
                step=5,
                interactive=False,
                label="Max Length",
            )
        
            sampling = gr.Radio(
                choices=["Beam search", "Nucleus sampling"],
                value="Beam search",
                label="Text Decoding Method",
                interactive=False,
            )
        
            top_p = gr.Slider(
                minimum=0.5,
                maximum=1.0,
                value=0.9,
                step=0.1,
                interactive=False,
                label="Top p",
            )
        
            beam_size = gr.Slider(
                minimum=1,
                maximum=10,
                value=5,
                step=1,
                interactive=False,
                label="Beam Size",
            )
        
            len_penalty = gr.Slider(
                minimum=-1,
                maximum=2,
                value=0.4,
                step=0.2,
                interactive=False,
                label="Length Penalty",
            )
        
            repetition_penalty = gr.Slider(
                minimum=-1,
                maximum=3,
                value=5,
                step=0.2,
                interactive=False,
                label="Repetition Penalty",
            )
    gr.Examples(
                    examples=examples,
                    inputs=[image_input, prompt_textbox, min_len, max_len, beam_size, len_penalty, repetition_penalty, top_p, sampling],
                    cache_examples=False,
                    fn=infer,
                    outputs=[output],
                )
    
    submit.click(infer, inputs=[image_input, prompt_textbox, min_len, max_len, beam_size, len_penalty, repetition_penalty, top_p, sampling], outputs=[output])

demo.queue(concurrency_count=16).launch(debug=True, share=True,)