File size: 6,833 Bytes
6a4b741 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
import gradio as gr
import torch
from diffusers import StableDiffusionXLPipeline, AutoencoderKL
from huggingface_hub import hf_hub_download
import lora
from time import sleep
import copy
sdxl_loras = [
("pixel-art-xl.jpeg", "Pixel Art XL", "nerijs/pixel-art-xl", "pixel art", "pixel-art-xl.safetensors", True),
("papercut_SDXL.jpeg", "Papercut SDXL", "TheLastBen/Papercut_SDXL", "papercut", "papercut.safetensors", False),
("lego-minifig-xl.jpeg", "Lego Minifig XL", "nerijs/lego-minifig-xl", "lego minifig", "legominifig-v1.0-000003.safetensors", True),
("3d_style_4.jpeg", "3D Render Style", "goofyai/3d_render_style_xl", "3d style", "3d_render_style_xl.safetensors", True),
("LogoRedmond-LogoLoraForSDXL.jpeg","Logo.Redmond", "artificialguybr/LogoRedmond-LogoLoraForSDXL", "LogoRedAF", "LogoRedmond_LogoRedAF.safetensors", False),
("LineAni.Redmond.png", "LinearManga.Redmond", "artificialguybr/LineAniRedmond-LinearMangaSDXL", "LineAniAF", "LineAniRedmond-LineAniAF.safetensors", True),
("embroid.png","Embroidery Style","ostris/embroidery_style_lora_sdxl","","embroidered_style_v1_sdxl.safetensors",False),
("watercolor.png","Watercolor Style","ostris/watercolor_style_lora_sdxl","","watercolor_v1_sdxl.safetensors",False),
("crayon.png","Crayon Style","ostris/crayon_style_lora_sdxl","","crayons_v1_sdxl.safetensors",False),
("dog.png", "Cyborg Style", "goofyai/cyborg_style_xl", "cyborg style", "cyborg_style_xl-off.safetensors", True),
("ToyRedmond-ToyLoraForSDXL10.png","Toy.Redmond", "artificialguybr/ToyRedmond-ToyLoraForSDXL10", "FnkRedmAF", "ToyRedmond-FnkRedmAF.safetensors", True),
("voxel-xl-lora.png", "Voxel XL", "Fictiverse/Voxel_XL_Lora", "voxel style", "VoxelXL_v1.safetensors", True),
("pikachu.webp", "Pikachu XL", "TheLastBen/Pikachu_SDXL", "pikachu", "pikachu.safetensors", False),
("william_eggleston.webp", "William Eggleston Style", "TheLastBen/William_Eggleston_Style_SDXL", "by william eggleston", "wegg.safetensors", False),
("josef_koudelka.webp", "Josef Koudelka Style", "TheLastBen/Josef_Koudelka_Style_SDXL", "by josef koudelka", "koud.safetensors", False),
("corgi_brick.jpeg", "Lego BrickHeadz", "nerijs/lego-brickheadz-xl", "lego brickheadz", "legobrickheadz-v1.0-000004.safetensors", True)
]
saved_names = [hf_hub_download(repo_id, filename) for _, _, repo_id, _, filename, _ in sdxl_loras]
def update_selection(selected_state: gr.SelectData):
sleep(60)
lora_repo = sdxl_loras[selected_state.index][2]
instance_prompt = sdxl_loras[selected_state.index][3]
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo})"
return updated_text, instance_prompt, selected_state
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
mutable_pipe = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
vae=vae,
torch_dtype=torch.float16,
).to("cpu")
original_pipe = copy.deepcopy(mutable_pipe)
mutable_pipe.to("cuda")
last_lora = ""
last_merged = False
def run_lora(prompt, negative, weight, selected_state):
global last_lora, last_merged
pipe = mutable_pipe
if(not selected_state):
raise gr.Error("You must select a LoRA")
repo_name = sdxl_loras[selected_state.index][2]
weight_name = sdxl_loras[selected_state.index][4]
full_path_lora = saved_names[selected_state.index]
cross_attention_kwargs = None
if(last_lora != repo_name):
if(last_merged):
pipe = copy.deepcopy(original_pipe)
pipe.to("cuda")
else:
pipe.unload_lora_weights()
is_compatible = sdxl_loras[selected_state.index][5]
if(is_compatible):
pipe.load_lora_weights(full_path_lora)
cross_attention_kwargs={"scale": weight}
else:
for weights_file in [full_path_lora]:
if ";" in weights_file:
weights_file, multiplier = weights_file.split(";")
multiplier = float(weight)
else:
multiplier = 1.0
lora_model, weights_sd = lora.create_network_from_weights(
multiplier, full_path_lora, pipe.vae, pipe.text_encoder, pipe.unet, for_inference=True
)
lora_model.merge_to(pipe.text_encoder, pipe.unet, weights_sd, torch.float16, "cuda")
last_merged = True
image = pipe(
prompt=prompt, negative_prompt=negative, num_inference_steps=20, guidance_scale=7.5, cross_attention_kwargs=cross_attention_kwargs).images[0]
last_lora = repo_name
return image
css = '''
#prompt textarea{width: calc(100% - 160px);border-top-right-radius: 0px;border-bottom-right-radius: 0px;}
#run_button{position:absolute;margin-top: 38px;right: 0;margin-right: 0.8em;border-bottom-left-radius: 0px;
border-top-left-radius: 0px;}
#gallery{display:flex}
#gallery .grid-wrap{min-height: 100%;}
'''
with gr.Blocks(css=css) as demo:
title = gr.Markdown("# Lora The Explorer XL")
with gr.Row():
gallery = gr.Gallery(value=[(a, b) for a, b, _, _, _, _ in sdxl_loras],
label="LoRA Gallery",
allow_preview=False,
columns=3,
elem_id="gallery"
)
with gr.Column():
prompt_title = gr.Markdown(value="### Click on a LoRA in the gallery to select it", visible=True)
with gr.Row():
prompt = gr.Textbox(label="Prompt", elem_id="prompt")
button = gr.Button("Run", elem_id="run_button")
result = gr.Image(interactive=False, label="result")
with gr.Accordion("Advanced options", open=False):
negative = gr.Textbox(label="Negative Prompt")
weight = gr.Slider(0, 1, value=1, step=0.1, label="LoRA weight")
with gr.Column():
gr.Markdown("Use it with:")
with gr.Row():
with gr.Accordion("🧨 diffusers", open=False):
gr.Markdown("")
with gr.Accordion("ComfyUI", open=False):
gr.Markdown("")
with gr.Accordion("Invoke AI", open=False):
gr.Markdown("")
with gr.Accordion("SD.Next (AUTO1111 fork)", open=False):
gr.Markdown("")
selected_state = gr.State()
gallery.select(update_selection, outputs=[prompt_title, prompt, selected_state], queue=False, show_progress=False)
button.click(fn=run_lora, inputs=[prompt, negative, weight, selected_state], outputs=result)
demo.launch() |