File size: 49,893 Bytes
be190eb 8079453 be190eb 8079453 40573e7 8079453 be190eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 |
# LoRA network module
# reference:
# https://github.com/microsoft/LoRA/blob/main/loralib/layers.py
# https://github.com/cloneofsimo/lora/blob/master/lora_diffusion/lora.py
import math
import os
from typing import Dict, List, Optional, Tuple, Type, Union
from diffusers import AutoencoderKL
from transformers import CLIPTextModel
import numpy as np
import torch
import re
RE_UPDOWN = re.compile(r"(up|down)_blocks_(\d+)_(resnets|upsamplers|downsamplers|attentions)_(\d+)_")
RE_UPDOWN = re.compile(r"(up|down)_blocks_(\d+)_(resnets|upsamplers|downsamplers|attentions)_(\d+)_")
class LoRAModule(torch.nn.Module):
"""
replaces forward method of the original Linear, instead of replacing the original Linear module.
"""
def __init__(
self,
lora_name,
org_module: torch.nn.Module,
multiplier=1.0,
lora_dim=4,
alpha=1,
dropout=None,
rank_dropout=None,
module_dropout=None,
):
"""if alpha == 0 or None, alpha is rank (no scaling)."""
super().__init__()
self.lora_name = lora_name
if org_module.__class__.__name__ == "Conv2d":
in_dim = org_module.in_channels
out_dim = org_module.out_channels
else:
in_dim = org_module.in_features
out_dim = org_module.out_features
# if limit_rank:
# self.lora_dim = min(lora_dim, in_dim, out_dim)
# if self.lora_dim != lora_dim:
# print(f"{lora_name} dim (rank) is changed to: {self.lora_dim}")
# else:
self.lora_dim = lora_dim
if org_module.__class__.__name__ == "Conv2d":
kernel_size = org_module.kernel_size
stride = org_module.stride
padding = org_module.padding
self.lora_down = torch.nn.Conv2d(in_dim, self.lora_dim, kernel_size, stride, padding, bias=False)
self.lora_up = torch.nn.Conv2d(self.lora_dim, out_dim, (1, 1), (1, 1), bias=False)
else:
self.lora_down = torch.nn.Linear(in_dim, self.lora_dim, bias=False)
self.lora_up = torch.nn.Linear(self.lora_dim, out_dim, bias=False)
if type(alpha) == torch.Tensor:
alpha = alpha.detach().float().numpy() # without casting, bf16 causes error
alpha = self.lora_dim if alpha is None or alpha == 0 else alpha
self.scale = alpha / self.lora_dim
self.register_buffer("alpha", torch.tensor(alpha)) # 定数として扱える
# same as microsoft's
torch.nn.init.kaiming_uniform_(self.lora_down.weight, a=math.sqrt(5))
torch.nn.init.zeros_(self.lora_up.weight)
self.multiplier = multiplier
self.org_module = org_module # remove in applying
self.dropout = dropout
self.rank_dropout = rank_dropout
self.module_dropout = module_dropout
def apply_to(self):
self.org_forward = self.org_module.forward
self.org_module.forward = self.forward
del self.org_module
def forward(self, x):
org_forwarded = self.org_forward(x)
# module dropout
if self.module_dropout is not None and self.training:
if torch.rand(1) < self.module_dropout:
return org_forwarded
lx = self.lora_down(x)
# normal dropout
if self.dropout is not None and self.training:
lx = torch.nn.functional.dropout(lx, p=self.dropout)
# rank dropout
if self.rank_dropout is not None and self.training:
mask = torch.rand((lx.size(0), self.lora_dim), device=lx.device) > self.rank_dropout
if len(lx.size()) == 3:
mask = mask.unsqueeze(1) # for Text Encoder
elif len(lx.size()) == 4:
mask = mask.unsqueeze(-1).unsqueeze(-1) # for Conv2d
lx = lx * mask
# scaling for rank dropout: treat as if the rank is changed
# maskから計算することも考えられるが、augmentation的な効果を期待してrank_dropoutを用いる
scale = self.scale * (1.0 / (1.0 - self.rank_dropout)) # redundant for readability
else:
scale = self.scale
lx = self.lora_up(lx)
return org_forwarded + lx * self.multiplier * scale
class LoRAInfModule(LoRAModule):
def __init__(
self,
lora_name,
org_module: torch.nn.Module,
multiplier=1.0,
lora_dim=4,
alpha=1,
**kwargs,
):
# no dropout for inference
super().__init__(lora_name, org_module, multiplier, lora_dim, alpha)
self.org_module_ref = [org_module] # 後から参照できるように
self.enabled = True
# check regional or not by lora_name
self.text_encoder = False
if lora_name.startswith("lora_te_"):
self.regional = False
self.use_sub_prompt = True
self.text_encoder = True
elif "attn2_to_k" in lora_name or "attn2_to_v" in lora_name:
self.regional = False
self.use_sub_prompt = True
elif "time_emb" in lora_name:
self.regional = False
self.use_sub_prompt = False
else:
self.regional = True
self.use_sub_prompt = False
self.network: LoRANetwork = None
def set_network(self, network):
self.network = network
# freezeしてマージする
def merge_to(self, sd, dtype, device):
# get up/down weight
up_weight = sd["lora_up.weight"].to(torch.float).to(device)
down_weight = sd["lora_down.weight"].to(torch.float).to(device)
# extract weight from org_module
org_sd = self.org_module.state_dict()
weight = org_sd["weight"].to(torch.float)
# merge weight
if len(weight.size()) == 2:
# linear
weight = weight + self.multiplier * (up_weight @ down_weight) * self.scale
elif down_weight.size()[2:4] == (1, 1):
# conv2d 1x1
weight = (
weight
+ self.multiplier
* (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3)
* self.scale
)
else:
# conv2d 3x3
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3)
# print(conved.size(), weight.size(), module.stride, module.padding)
weight = weight + self.multiplier * conved * self.scale
# set weight to org_module
org_sd["weight"] = weight.to(dtype)
self.org_module.load_state_dict(org_sd)
# 復元できるマージのため、このモジュールのweightを返す
def get_weight(self, multiplier=None):
if multiplier is None:
multiplier = self.multiplier
# get up/down weight from module
up_weight = self.lora_up.weight.to(torch.float)
down_weight = self.lora_down.weight.to(torch.float)
# pre-calculated weight
if len(down_weight.size()) == 2:
# linear
weight = self.multiplier * (up_weight @ down_weight) * self.scale
elif down_weight.size()[2:4] == (1, 1):
# conv2d 1x1
weight = (
self.multiplier
* (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3)
* self.scale
)
else:
# conv2d 3x3
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3)
weight = self.multiplier * conved * self.scale
return weight
def set_region(self, region):
self.region = region
self.region_mask = None
def default_forward(self, x):
# print("default_forward", self.lora_name, x.size())
org_forward = self.org_forward(x)
lora_down = self.lora_down(x)
lora_up_down = self.lora_up(lora_down)
print(org_forward)
print(lora_up_down)
print(self.multiplier)
return org_forward + lora_up_down * self.multiplier #* self.scale
def forward(self, x):
if not self.enabled:
return self.org_forward(x)
if self.network is None or self.network.sub_prompt_index is None:
return self.default_forward(x)
if not self.regional and not self.use_sub_prompt:
return self.default_forward(x)
if self.regional:
return self.regional_forward(x)
else:
return self.sub_prompt_forward(x)
def get_mask_for_x(self, x):
# calculate size from shape of x
if len(x.size()) == 4:
h, w = x.size()[2:4]
area = h * w
else:
area = x.size()[1]
mask = self.network.mask_dic[area]
if mask is None:
raise ValueError(f"mask is None for resolution {area}")
if len(x.size()) != 4:
mask = torch.reshape(mask, (1, -1, 1))
return mask
def regional_forward(self, x):
if "attn2_to_out" in self.lora_name:
return self.to_out_forward(x)
if self.network.mask_dic is None: # sub_prompt_index >= 3
return self.default_forward(x)
# apply mask for LoRA result
lx = self.lora_up(self.lora_down(x)) * self.multiplier * self.scale
mask = self.get_mask_for_x(lx)
# print("regional", self.lora_name, self.network.sub_prompt_index, lx.size(), mask.size())
lx = lx * mask
x = self.org_forward(x)
x = x + lx
if "attn2_to_q" in self.lora_name and self.network.is_last_network:
x = self.postp_to_q(x)
return x
def postp_to_q(self, x):
# repeat x to num_sub_prompts
has_real_uncond = x.size()[0] // self.network.batch_size == 3
qc = self.network.batch_size # uncond
qc += self.network.batch_size * self.network.num_sub_prompts # cond
if has_real_uncond:
qc += self.network.batch_size # real_uncond
query = torch.zeros((qc, x.size()[1], x.size()[2]), device=x.device, dtype=x.dtype)
query[: self.network.batch_size] = x[: self.network.batch_size]
for i in range(self.network.batch_size):
qi = self.network.batch_size + i * self.network.num_sub_prompts
query[qi : qi + self.network.num_sub_prompts] = x[self.network.batch_size + i]
if has_real_uncond:
query[-self.network.batch_size :] = x[-self.network.batch_size :]
# print("postp_to_q", self.lora_name, x.size(), query.size(), self.network.num_sub_prompts)
return query
def sub_prompt_forward(self, x):
if x.size()[0] == self.network.batch_size: # if uncond in text_encoder, do not apply LoRA
return self.org_forward(x)
emb_idx = self.network.sub_prompt_index
if not self.text_encoder:
emb_idx += self.network.batch_size
# apply sub prompt of X
lx = x[emb_idx :: self.network.num_sub_prompts]
lx = self.lora_up(self.lora_down(lx)) * self.multiplier * self.scale
# print("sub_prompt_forward", self.lora_name, x.size(), lx.size(), emb_idx)
x = self.org_forward(x)
x[emb_idx :: self.network.num_sub_prompts] += lx
return x
def to_out_forward(self, x):
# print("to_out_forward", self.lora_name, x.size(), self.network.is_last_network)
if self.network.is_last_network:
masks = [None] * self.network.num_sub_prompts
self.network.shared[self.lora_name] = (None, masks)
else:
lx, masks = self.network.shared[self.lora_name]
# call own LoRA
x1 = x[self.network.batch_size + self.network.sub_prompt_index :: self.network.num_sub_prompts]
lx1 = self.lora_up(self.lora_down(x1)) * self.multiplier * self.scale
if self.network.is_last_network:
lx = torch.zeros(
(self.network.num_sub_prompts * self.network.batch_size, *lx1.size()[1:]), device=lx1.device, dtype=lx1.dtype
)
self.network.shared[self.lora_name] = (lx, masks)
# print("to_out_forward", lx.size(), lx1.size(), self.network.sub_prompt_index, self.network.num_sub_prompts)
lx[self.network.sub_prompt_index :: self.network.num_sub_prompts] += lx1
masks[self.network.sub_prompt_index] = self.get_mask_for_x(lx1)
# if not last network, return x and masks
x = self.org_forward(x)
if not self.network.is_last_network:
return x
lx, masks = self.network.shared.pop(self.lora_name)
# if last network, combine separated x with mask weighted sum
has_real_uncond = x.size()[0] // self.network.batch_size == self.network.num_sub_prompts + 2
out = torch.zeros((self.network.batch_size * (3 if has_real_uncond else 2), *x.size()[1:]), device=x.device, dtype=x.dtype)
out[: self.network.batch_size] = x[: self.network.batch_size] # uncond
if has_real_uncond:
out[-self.network.batch_size :] = x[-self.network.batch_size :] # real_uncond
# print("to_out_forward", self.lora_name, self.network.sub_prompt_index, self.network.num_sub_prompts)
# for i in range(len(masks)):
# if masks[i] is None:
# masks[i] = torch.zeros_like(masks[-1])
mask = torch.cat(masks)
mask_sum = torch.sum(mask, dim=0) + 1e-4
for i in range(self.network.batch_size):
# 1枚の画像ごとに処理する
lx1 = lx[i * self.network.num_sub_prompts : (i + 1) * self.network.num_sub_prompts]
lx1 = lx1 * mask
lx1 = torch.sum(lx1, dim=0)
xi = self.network.batch_size + i * self.network.num_sub_prompts
x1 = x[xi : xi + self.network.num_sub_prompts]
x1 = x1 * mask
x1 = torch.sum(x1, dim=0)
x1 = x1 / mask_sum
x1 = x1 + lx1
out[self.network.batch_size + i] = x1
# print("to_out_forward", x.size(), out.size(), has_real_uncond)
return out
def parse_block_lr_kwargs(nw_kwargs):
down_lr_weight = nw_kwargs.get("down_lr_weight", None)
mid_lr_weight = nw_kwargs.get("mid_lr_weight", None)
up_lr_weight = nw_kwargs.get("up_lr_weight", None)
# 以上のいずれにも設定がない場合は無効としてNoneを返す
if down_lr_weight is None and mid_lr_weight is None and up_lr_weight is None:
return None, None, None
# extract learning rate weight for each block
if down_lr_weight is not None:
# if some parameters are not set, use zero
if "," in down_lr_weight:
down_lr_weight = [(float(s) if s else 0.0) for s in down_lr_weight.split(",")]
if mid_lr_weight is not None:
mid_lr_weight = float(mid_lr_weight)
if up_lr_weight is not None:
if "," in up_lr_weight:
up_lr_weight = [(float(s) if s else 0.0) for s in up_lr_weight.split(",")]
down_lr_weight, mid_lr_weight, up_lr_weight = get_block_lr_weight(
down_lr_weight, mid_lr_weight, up_lr_weight, float(nw_kwargs.get("block_lr_zero_threshold", 0.0))
)
return down_lr_weight, mid_lr_weight, up_lr_weight
def create_network(
multiplier: float,
network_dim: Optional[int],
network_alpha: Optional[float],
vae: AutoencoderKL,
text_encoder: Union[CLIPTextModel, List[CLIPTextModel]],
unet,
neuron_dropout: Optional[float] = None,
**kwargs,
):
if network_dim is None:
network_dim = 4 # default
if network_alpha is None:
network_alpha = 1.0
# extract dim/alpha for conv2d, and block dim
conv_dim = kwargs.get("conv_dim", None)
conv_alpha = kwargs.get("conv_alpha", None)
if conv_dim is not None:
conv_dim = int(conv_dim)
if conv_alpha is None:
conv_alpha = 1.0
else:
conv_alpha = float(conv_alpha)
# block dim/alpha/lr
block_dims = kwargs.get("block_dims", None)
down_lr_weight, mid_lr_weight, up_lr_weight = parse_block_lr_kwargs(kwargs)
# 以上のいずれかに指定があればblockごとのdim(rank)を有効にする
if block_dims is not None or down_lr_weight is not None or mid_lr_weight is not None or up_lr_weight is not None:
block_alphas = kwargs.get("block_alphas", None)
conv_block_dims = kwargs.get("conv_block_dims", None)
conv_block_alphas = kwargs.get("conv_block_alphas", None)
block_dims, block_alphas, conv_block_dims, conv_block_alphas = get_block_dims_and_alphas(
block_dims, block_alphas, network_dim, network_alpha, conv_block_dims, conv_block_alphas, conv_dim, conv_alpha
)
# remove block dim/alpha without learning rate
block_dims, block_alphas, conv_block_dims, conv_block_alphas = remove_block_dims_and_alphas(
block_dims, block_alphas, conv_block_dims, conv_block_alphas, down_lr_weight, mid_lr_weight, up_lr_weight
)
else:
block_alphas = None
conv_block_dims = None
conv_block_alphas = None
# rank/module dropout
rank_dropout = kwargs.get("rank_dropout", None)
if rank_dropout is not None:
rank_dropout = float(rank_dropout)
module_dropout = kwargs.get("module_dropout", None)
if module_dropout is not None:
module_dropout = float(module_dropout)
# すごく引数が多いな ( ^ω^)・・・
network = LoRANetwork(
text_encoder,
unet,
multiplier=multiplier,
lora_dim=network_dim,
alpha=network_alpha,
dropout=neuron_dropout,
rank_dropout=rank_dropout,
module_dropout=module_dropout,
conv_lora_dim=conv_dim,
conv_alpha=conv_alpha,
block_dims=block_dims,
block_alphas=block_alphas,
conv_block_dims=conv_block_dims,
conv_block_alphas=conv_block_alphas,
varbose=True,
)
if up_lr_weight is not None or mid_lr_weight is not None or down_lr_weight is not None:
network.set_block_lr_weight(up_lr_weight, mid_lr_weight, down_lr_weight)
return network
# このメソッドは外部から呼び出される可能性を考慮しておく
# network_dim, network_alpha にはデフォルト値が入っている。
# block_dims, block_alphas は両方ともNoneまたは両方とも値が入っている
# conv_dim, conv_alpha は両方ともNoneまたは両方とも値が入っている
def get_block_dims_and_alphas(
block_dims, block_alphas, network_dim, network_alpha, conv_block_dims, conv_block_alphas, conv_dim, conv_alpha
):
num_total_blocks = LoRANetwork.NUM_OF_BLOCKS * 2 + 1
def parse_ints(s):
return [int(i) for i in s.split(",")]
def parse_floats(s):
return [float(i) for i in s.split(",")]
# block_dimsとblock_alphasをパースする。必ず値が入る
if block_dims is not None:
block_dims = parse_ints(block_dims)
assert (
len(block_dims) == num_total_blocks
), f"block_dims must have {num_total_blocks} elements / block_dimsは{num_total_blocks}個指定してください"
else:
print(f"block_dims is not specified. all dims are set to {network_dim} / block_dimsが指定されていません。すべてのdimは{network_dim}になります")
block_dims = [network_dim] * num_total_blocks
if block_alphas is not None:
block_alphas = parse_floats(block_alphas)
assert (
len(block_alphas) == num_total_blocks
), f"block_alphas must have {num_total_blocks} elements / block_alphasは{num_total_blocks}個指定してください"
else:
print(
f"block_alphas is not specified. all alphas are set to {network_alpha} / block_alphasが指定されていません。すべてのalphaは{network_alpha}になります"
)
block_alphas = [network_alpha] * num_total_blocks
# conv_block_dimsとconv_block_alphasを、指定がある場合のみパースする。指定がなければconv_dimとconv_alphaを使う
if conv_block_dims is not None:
conv_block_dims = parse_ints(conv_block_dims)
assert (
len(conv_block_dims) == num_total_blocks
), f"conv_block_dims must have {num_total_blocks} elements / conv_block_dimsは{num_total_blocks}個指定してください"
if conv_block_alphas is not None:
conv_block_alphas = parse_floats(conv_block_alphas)
assert (
len(conv_block_alphas) == num_total_blocks
), f"conv_block_alphas must have {num_total_blocks} elements / conv_block_alphasは{num_total_blocks}個指定してください"
else:
if conv_alpha is None:
conv_alpha = 1.0
print(
f"conv_block_alphas is not specified. all alphas are set to {conv_alpha} / conv_block_alphasが指定されていません。すべてのalphaは{conv_alpha}になります"
)
conv_block_alphas = [conv_alpha] * num_total_blocks
else:
if conv_dim is not None:
print(
f"conv_dim/alpha for all blocks are set to {conv_dim} and {conv_alpha} / すべてのブロックのconv_dimとalphaは{conv_dim}および{conv_alpha}になります"
)
conv_block_dims = [conv_dim] * num_total_blocks
conv_block_alphas = [conv_alpha] * num_total_blocks
else:
conv_block_dims = None
conv_block_alphas = None
return block_dims, block_alphas, conv_block_dims, conv_block_alphas
# 層別学習率用に層ごとの学習率に対する倍率を定義する、外部から呼び出される可能性を考慮しておく
def get_block_lr_weight(
down_lr_weight, mid_lr_weight, up_lr_weight, zero_threshold
) -> Tuple[List[float], List[float], List[float]]:
# パラメータ未指定時は何もせず、今までと同じ動作とする
if up_lr_weight is None and mid_lr_weight is None and down_lr_weight is None:
return None, None, None
max_len = LoRANetwork.NUM_OF_BLOCKS # フルモデル相当でのup,downの層の数
def get_list(name_with_suffix) -> List[float]:
import math
tokens = name_with_suffix.split("+")
name = tokens[0]
base_lr = float(tokens[1]) if len(tokens) > 1 else 0.0
if name == "cosine":
return [math.sin(math.pi * (i / (max_len - 1)) / 2) + base_lr for i in reversed(range(max_len))]
elif name == "sine":
return [math.sin(math.pi * (i / (max_len - 1)) / 2) + base_lr for i in range(max_len)]
elif name == "linear":
return [i / (max_len - 1) + base_lr for i in range(max_len)]
elif name == "reverse_linear":
return [i / (max_len - 1) + base_lr for i in reversed(range(max_len))]
elif name == "zeros":
return [0.0 + base_lr] * max_len
else:
print(
"Unknown lr_weight argument %s is used. Valid arguments: / 不明なlr_weightの引数 %s が使われました。有効な引数:\n\tcosine, sine, linear, reverse_linear, zeros"
% (name)
)
return None
if type(down_lr_weight) == str:
down_lr_weight = get_list(down_lr_weight)
if type(up_lr_weight) == str:
up_lr_weight = get_list(up_lr_weight)
if (up_lr_weight != None and len(up_lr_weight) > max_len) or (down_lr_weight != None and len(down_lr_weight) > max_len):
print("down_weight or up_weight is too long. Parameters after %d-th are ignored." % max_len)
print("down_weightもしくはup_weightが長すぎます。%d個目以降のパラメータは無視されます。" % max_len)
up_lr_weight = up_lr_weight[:max_len]
down_lr_weight = down_lr_weight[:max_len]
if (up_lr_weight != None and len(up_lr_weight) < max_len) or (down_lr_weight != None and len(down_lr_weight) < max_len):
print("down_weight or up_weight is too short. Parameters after %d-th are filled with 1." % max_len)
print("down_weightもしくはup_weightが短すぎます。%d個目までの不足したパラメータは1で補われます。" % max_len)
if down_lr_weight != None and len(down_lr_weight) < max_len:
down_lr_weight = down_lr_weight + [1.0] * (max_len - len(down_lr_weight))
if up_lr_weight != None and len(up_lr_weight) < max_len:
up_lr_weight = up_lr_weight + [1.0] * (max_len - len(up_lr_weight))
if (up_lr_weight != None) or (mid_lr_weight != None) or (down_lr_weight != None):
print("apply block learning rate / 階層別学習率を適用します。")
if down_lr_weight != None:
down_lr_weight = [w if w > zero_threshold else 0 for w in down_lr_weight]
print("down_lr_weight (shallower -> deeper, 浅い層->深い層):", down_lr_weight)
else:
print("down_lr_weight: all 1.0, すべて1.0")
if mid_lr_weight != None:
mid_lr_weight = mid_lr_weight if mid_lr_weight > zero_threshold else 0
print("mid_lr_weight:", mid_lr_weight)
else:
print("mid_lr_weight: 1.0")
if up_lr_weight != None:
up_lr_weight = [w if w > zero_threshold else 0 for w in up_lr_weight]
print("up_lr_weight (deeper -> shallower, 深い層->浅い層):", up_lr_weight)
else:
print("up_lr_weight: all 1.0, すべて1.0")
return down_lr_weight, mid_lr_weight, up_lr_weight
# lr_weightが0のblockをblock_dimsから除外する、外部から呼び出す可能性を考慮しておく
def remove_block_dims_and_alphas(
block_dims, block_alphas, conv_block_dims, conv_block_alphas, down_lr_weight, mid_lr_weight, up_lr_weight
):
# set 0 to block dim without learning rate to remove the block
if down_lr_weight != None:
for i, lr in enumerate(down_lr_weight):
if lr == 0:
block_dims[i] = 0
if conv_block_dims is not None:
conv_block_dims[i] = 0
if mid_lr_weight != None:
if mid_lr_weight == 0:
block_dims[LoRANetwork.NUM_OF_BLOCKS] = 0
if conv_block_dims is not None:
conv_block_dims[LoRANetwork.NUM_OF_BLOCKS] = 0
if up_lr_weight != None:
for i, lr in enumerate(up_lr_weight):
if lr == 0:
block_dims[LoRANetwork.NUM_OF_BLOCKS + 1 + i] = 0
if conv_block_dims is not None:
conv_block_dims[LoRANetwork.NUM_OF_BLOCKS + 1 + i] = 0
return block_dims, block_alphas, conv_block_dims, conv_block_alphas
# 外部から呼び出す可能性を考慮しておく
def get_block_index(lora_name: str) -> int:
block_idx = -1 # invalid lora name
m = RE_UPDOWN.search(lora_name)
if m:
g = m.groups()
i = int(g[1])
j = int(g[3])
if g[2] == "resnets":
idx = 3 * i + j
elif g[2] == "attentions":
idx = 3 * i + j
elif g[2] == "upsamplers" or g[2] == "downsamplers":
idx = 3 * i + 2
if g[0] == "down":
block_idx = 1 + idx # 0に該当するLoRAは存在しない
elif g[0] == "up":
block_idx = LoRANetwork.NUM_OF_BLOCKS + 1 + idx
elif "mid_block_" in lora_name:
block_idx = LoRANetwork.NUM_OF_BLOCKS # idx=12
return block_idx
# Create network from weights for inference, weights are not loaded here (because can be merged)
def create_network_from_weights(multiplier, file, vae, text_encoder, unet, weights_sd=None, for_inference=False, **kwargs):
if weights_sd is None:
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import load_file, safe_open
weights_sd = load_file(file)
else:
weights_sd = torch.load(file, map_location="cpu")
# get dim/alpha mapping
modules_dim = {}
modules_alpha = {}
for key, value in weights_sd.items():
if "." not in key:
continue
lora_name = key.split(".")[0]
if "alpha" in key:
modules_alpha[lora_name] = value
elif "lora_down" in key:
dim = value.size()[0]
modules_dim[lora_name] = dim
# print(lora_name, value.size(), dim)
# support old LoRA without alpha
for key in modules_dim.keys():
if key not in modules_alpha:
modules_alpha[key] = modules_dim[key]
module_class = LoRAInfModule if for_inference else LoRAModule
network = LoRANetwork(
text_encoder, unet, multiplier=multiplier, modules_dim=modules_dim, modules_alpha=modules_alpha, module_class=module_class
)
# block lr
down_lr_weight, mid_lr_weight, up_lr_weight = parse_block_lr_kwargs(kwargs)
if up_lr_weight is not None or mid_lr_weight is not None or down_lr_weight is not None:
network.set_block_lr_weight(up_lr_weight, mid_lr_weight, down_lr_weight)
return network, weights_sd
class LoRANetwork(torch.nn.Module):
NUM_OF_BLOCKS = 12 # フルモデル相当でのup,downの層の数
UNET_TARGET_REPLACE_MODULE = ["Transformer2DModel"]
UNET_TARGET_REPLACE_MODULE_CONV2D_3X3 = ["ResnetBlock2D", "Downsample2D", "Upsample2D"]
TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPMLP"]
LORA_PREFIX_UNET = "lora_unet"
LORA_PREFIX_TEXT_ENCODER = "lora_te"
# SDXL: must starts with LORA_PREFIX_TEXT_ENCODER
LORA_PREFIX_TEXT_ENCODER1 = "lora_te1"
LORA_PREFIX_TEXT_ENCODER2 = "lora_te2"
def __init__(
self,
text_encoder: Union[List[CLIPTextModel], CLIPTextModel],
unet,
multiplier: float = 1.0,
lora_dim: int = 4,
alpha: float = 1,
dropout: Optional[float] = None,
rank_dropout: Optional[float] = None,
module_dropout: Optional[float] = None,
conv_lora_dim: Optional[int] = None,
conv_alpha: Optional[float] = None,
block_dims: Optional[List[int]] = None,
block_alphas: Optional[List[float]] = None,
conv_block_dims: Optional[List[int]] = None,
conv_block_alphas: Optional[List[float]] = None,
modules_dim: Optional[Dict[str, int]] = None,
modules_alpha: Optional[Dict[str, int]] = None,
module_class: Type[object] = LoRAModule,
varbose: Optional[bool] = False,
) -> None:
"""
LoRA network: すごく引数が多いが、パターンは以下の通り
1. lora_dimとalphaを指定
2. lora_dim、alpha、conv_lora_dim、conv_alphaを指定
3. block_dimsとblock_alphasを指定 : Conv2d3x3には適用しない
4. block_dims、block_alphas、conv_block_dims、conv_block_alphasを指定 : Conv2d3x3にも適用する
5. modules_dimとmodules_alphaを指定 (推論用)
"""
super().__init__()
self.multiplier = multiplier
self.lora_dim = lora_dim
self.alpha = alpha
self.conv_lora_dim = conv_lora_dim
self.conv_alpha = conv_alpha
self.dropout = dropout
self.rank_dropout = rank_dropout
self.module_dropout = module_dropout
if modules_dim is not None:
print(f"create LoRA network from weights")
elif block_dims is not None:
print(f"create LoRA network from block_dims")
print(f"neuron dropout: p={self.dropout}, rank dropout: p={self.rank_dropout}, module dropout: p={self.module_dropout}")
print(f"block_dims: {block_dims}")
print(f"block_alphas: {block_alphas}")
if conv_block_dims is not None:
print(f"conv_block_dims: {conv_block_dims}")
print(f"conv_block_alphas: {conv_block_alphas}")
else:
print(f"create LoRA network. base dim (rank): {lora_dim}, alpha: {alpha}")
print(f"neuron dropout: p={self.dropout}, rank dropout: p={self.rank_dropout}, module dropout: p={self.module_dropout}")
if self.conv_lora_dim is not None:
print(f"apply LoRA to Conv2d with kernel size (3,3). dim (rank): {self.conv_lora_dim}, alpha: {self.conv_alpha}")
# create module instances
def create_modules(
is_unet: bool,
text_encoder_idx: Optional[int], # None, 1, 2
root_module: torch.nn.Module,
target_replace_modules: List[torch.nn.Module],
) -> List[LoRAModule]:
prefix = (
self.LORA_PREFIX_UNET
if is_unet
else (
self.LORA_PREFIX_TEXT_ENCODER
if text_encoder_idx is None
else (self.LORA_PREFIX_TEXT_ENCODER1 if text_encoder_idx == 1 else self.LORA_PREFIX_TEXT_ENCODER2)
)
)
loras = []
skipped = []
for name, module in root_module.named_modules():
if module.__class__.__name__ in target_replace_modules:
for child_name, child_module in module.named_modules():
is_linear = child_module.__class__.__name__ == "Linear"
is_conv2d = child_module.__class__.__name__ == "Conv2d"
is_conv2d_1x1 = is_conv2d and child_module.kernel_size == (1, 1)
if is_linear or is_conv2d:
lora_name = prefix + "." + name + "." + child_name
lora_name = lora_name.replace(".", "_")
dim = None
alpha = None
if modules_dim is not None:
# モジュール指定あり
if lora_name in modules_dim:
dim = modules_dim[lora_name]
alpha = modules_alpha[lora_name]
elif is_unet and block_dims is not None:
# U-Netでblock_dims指定あり
block_idx = get_block_index(lora_name)
if is_linear or is_conv2d_1x1:
dim = block_dims[block_idx]
alpha = block_alphas[block_idx]
elif conv_block_dims is not None:
dim = conv_block_dims[block_idx]
alpha = conv_block_alphas[block_idx]
else:
# 通常、すべて対象とする
if is_linear or is_conv2d_1x1:
dim = self.lora_dim
alpha = self.alpha
elif self.conv_lora_dim is not None:
dim = self.conv_lora_dim
alpha = self.conv_alpha
if dim is None or dim == 0:
# skipした情報を出力
if is_linear or is_conv2d_1x1 or (self.conv_lora_dim is not None or conv_block_dims is not None):
skipped.append(lora_name)
continue
lora = module_class(
lora_name,
child_module,
self.multiplier,
dim,
alpha,
dropout=dropout,
rank_dropout=rank_dropout,
module_dropout=module_dropout,
)
loras.append(lora)
return loras, skipped
text_encoders = text_encoder if type(text_encoder) == list else [text_encoder]
print(text_encoders)
# create LoRA for text encoder
# 毎回すべてのモジュールを作るのは無駄なので要検討
self.text_encoder_loras = []
skipped_te = []
for i, text_encoder in enumerate(text_encoders):
if len(text_encoders) > 1:
index = i + 1
print(f"create LoRA for Text Encoder {index}:")
else:
index = None
print(f"create LoRA for Text Encoder:")
print(text_encoder)
text_encoder_loras, skipped = create_modules(False, index, text_encoder, LoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE)
self.text_encoder_loras.extend(text_encoder_loras)
skipped_te += skipped
print(f"create LoRA for Text Encoder: {len(self.text_encoder_loras)} modules.")
# extend U-Net target modules if conv2d 3x3 is enabled, or load from weights
target_modules = LoRANetwork.UNET_TARGET_REPLACE_MODULE
if modules_dim is not None or self.conv_lora_dim is not None or conv_block_dims is not None:
target_modules += LoRANetwork.UNET_TARGET_REPLACE_MODULE_CONV2D_3X3
self.unet_loras, skipped_un = create_modules(True, None, unet, target_modules)
print(f"create LoRA for U-Net: {len(self.unet_loras)} modules.")
skipped = skipped_te + skipped_un
if varbose and len(skipped) > 0:
print(
f"because block_lr_weight is 0 or dim (rank) is 0, {len(skipped)} LoRA modules are skipped / block_lr_weightまたはdim (rank)が0の為、次の{len(skipped)}個のLoRAモジュールはスキップされます:"
)
for name in skipped:
print(f"\t{name}")
self.up_lr_weight: List[float] = None
self.down_lr_weight: List[float] = None
self.mid_lr_weight: float = None
self.block_lr = False
# assertion
names = set()
for lora in self.text_encoder_loras + self.unet_loras:
assert lora.lora_name not in names, f"duplicated lora name: {lora.lora_name}"
names.add(lora.lora_name)
def set_multiplier(self, multiplier):
self.multiplier = multiplier
for lora in self.text_encoder_loras + self.unet_loras:
lora.multiplier = self.multiplier
def load_weights(self, file):
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import load_file
weights_sd = load_file(file)
else:
weights_sd = torch.load(file, map_location="cpu")
info = self.load_state_dict(weights_sd, False)
return info
def apply_to(self, text_encoder, unet, apply_text_encoder=True, apply_unet=True):
if apply_text_encoder:
print("enable LoRA for text encoder")
else:
self.text_encoder_loras = []
if apply_unet:
print("enable LoRA for U-Net")
else:
self.unet_loras = []
for lora in self.text_encoder_loras + self.unet_loras:
lora.apply_to()
self.add_module(lora.lora_name, lora)
# マージできるかどうかを返す
def is_mergeable(self):
return True
# TODO refactor to common function with apply_to
def merge_to(self, text_encoder, unet, weights_sd, dtype, device):
apply_text_encoder = apply_unet = False
for key in weights_sd.keys():
if key.startswith(LoRANetwork.LORA_PREFIX_TEXT_ENCODER):
apply_text_encoder = True
elif key.startswith(LoRANetwork.LORA_PREFIX_UNET):
apply_unet = True
if apply_text_encoder:
print("enable LoRA for text encoder")
else:
self.text_encoder_loras = []
if apply_unet:
print("enable LoRA for U-Net")
else:
self.unet_loras = []
for lora in self.text_encoder_loras + self.unet_loras:
sd_for_lora = {}
for key in weights_sd.keys():
if key.startswith(lora.lora_name):
sd_for_lora[key[len(lora.lora_name) + 1 :]] = weights_sd[key]
lora.merge_to(sd_for_lora, dtype, device)
print(f"weights are merged")
# 層別学習率用に層ごとの学習率に対する倍率を定義する 引数の順番が逆だがとりあえず気にしない
def set_block_lr_weight(
self,
up_lr_weight: List[float] = None,
mid_lr_weight: float = None,
down_lr_weight: List[float] = None,
):
self.block_lr = True
self.down_lr_weight = down_lr_weight
self.mid_lr_weight = mid_lr_weight
self.up_lr_weight = up_lr_weight
def get_lr_weight(self, lora: LoRAModule) -> float:
lr_weight = 1.0
block_idx = get_block_index(lora.lora_name)
if block_idx < 0:
return lr_weight
if block_idx < LoRANetwork.NUM_OF_BLOCKS:
if self.down_lr_weight != None:
lr_weight = self.down_lr_weight[block_idx]
elif block_idx == LoRANetwork.NUM_OF_BLOCKS:
if self.mid_lr_weight != None:
lr_weight = self.mid_lr_weight
elif block_idx > LoRANetwork.NUM_OF_BLOCKS:
if self.up_lr_weight != None:
lr_weight = self.up_lr_weight[block_idx - LoRANetwork.NUM_OF_BLOCKS - 1]
return lr_weight
# 二つのText Encoderに別々の学習率を設定できるようにするといいかも
def prepare_optimizer_params(self, text_encoder_lr, unet_lr, default_lr):
self.requires_grad_(True)
all_params = []
def enumerate_params(loras):
params = []
for lora in loras:
params.extend(lora.parameters())
return params
if self.text_encoder_loras:
param_data = {"params": enumerate_params(self.text_encoder_loras)}
if text_encoder_lr is not None:
param_data["lr"] = text_encoder_lr
all_params.append(param_data)
if self.unet_loras:
if self.block_lr:
# 学習率のグラフをblockごとにしたいので、blockごとにloraを分類
block_idx_to_lora = {}
for lora in self.unet_loras:
idx = get_block_index(lora.lora_name)
if idx not in block_idx_to_lora:
block_idx_to_lora[idx] = []
block_idx_to_lora[idx].append(lora)
# blockごとにパラメータを設定する
for idx, block_loras in block_idx_to_lora.items():
param_data = {"params": enumerate_params(block_loras)}
if unet_lr is not None:
param_data["lr"] = unet_lr * self.get_lr_weight(block_loras[0])
elif default_lr is not None:
param_data["lr"] = default_lr * self.get_lr_weight(block_loras[0])
if ("lr" in param_data) and (param_data["lr"] == 0):
continue
all_params.append(param_data)
else:
param_data = {"params": enumerate_params(self.unet_loras)}
if unet_lr is not None:
param_data["lr"] = unet_lr
all_params.append(param_data)
return all_params
def enable_gradient_checkpointing(self):
# not supported
pass
def prepare_grad_etc(self, text_encoder, unet):
self.requires_grad_(True)
def on_epoch_start(self, text_encoder, unet):
self.train()
def get_trainable_params(self):
return self.parameters()
def save_weights(self, file, dtype, metadata):
if metadata is not None and len(metadata) == 0:
metadata = None
state_dict = self.state_dict()
if dtype is not None:
for key in list(state_dict.keys()):
v = state_dict[key]
v = v.detach().clone().to("cpu").to(dtype)
state_dict[key] = v
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import save_file
from library import train_util
# Precalculate model hashes to save time on indexing
if metadata is None:
metadata = {}
model_hash, legacy_hash = train_util.precalculate_safetensors_hashes(state_dict, metadata)
metadata["sshs_model_hash"] = model_hash
metadata["sshs_legacy_hash"] = legacy_hash
save_file(state_dict, file, metadata)
else:
torch.save(state_dict, file)
# mask is a tensor with values from 0 to 1
def set_region(self, sub_prompt_index, is_last_network, mask):
if mask.max() == 0:
mask = torch.ones_like(mask)
self.mask = mask
self.sub_prompt_index = sub_prompt_index
self.is_last_network = is_last_network
for lora in self.text_encoder_loras + self.unet_loras:
lora.set_network(self)
def set_current_generation(self, batch_size, num_sub_prompts, width, height, shared):
self.batch_size = batch_size
self.num_sub_prompts = num_sub_prompts
self.current_size = (height, width)
self.shared = shared
# create masks
mask = self.mask
mask_dic = {}
mask = mask.unsqueeze(0).unsqueeze(1) # b(1),c(1),h,w
ref_weight = self.text_encoder_loras[0].lora_down.weight if self.text_encoder_loras else self.unet_loras[0].lora_down.weight
dtype = ref_weight.dtype
device = ref_weight.device
def resize_add(mh, mw):
# print(mh, mw, mh * mw)
m = torch.nn.functional.interpolate(mask, (mh, mw), mode="bilinear") # doesn't work in bf16
m = m.to(device, dtype=dtype)
mask_dic[mh * mw] = m
h = height // 8
w = width // 8
for _ in range(4):
resize_add(h, w)
if h % 2 == 1 or w % 2 == 1: # add extra shape if h/w is not divisible by 2
resize_add(h + h % 2, w + w % 2)
h = (h + 1) // 2
w = (w + 1) // 2
self.mask_dic = mask_dic
def backup_weights(self):
# 重みのバックアップを行う
loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras
for lora in loras:
org_module = lora.org_module_ref[0]
if not hasattr(org_module, "_lora_org_weight"):
sd = org_module.state_dict()
org_module._lora_org_weight = sd["weight"].detach().clone()
org_module._lora_restored = True
def restore_weights(self):
# 重みのリストアを行う
loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras
for lora in loras:
org_module = lora.org_module_ref[0]
if not org_module._lora_restored:
sd = org_module.state_dict()
sd["weight"] = org_module._lora_org_weight
org_module.load_state_dict(sd)
org_module._lora_restored = True
def pre_calculation(self):
# 事前計算を行う
loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras
for lora in loras:
org_module = lora.org_module_ref[0]
sd = org_module.state_dict()
org_weight = sd["weight"]
lora_weight = lora.get_weight().to(org_weight.device, dtype=org_weight.dtype)
sd["weight"] = org_weight + lora_weight
assert sd["weight"].shape == org_weight.shape
org_module.load_state_dict(sd)
org_module._lora_restored = False
lora.enabled = False
def apply_max_norm_regularization(self, max_norm_value, device):
downkeys = []
upkeys = []
alphakeys = []
norms = []
keys_scaled = 0
state_dict = self.state_dict()
for key in state_dict.keys():
if "lora_down" in key and "weight" in key:
downkeys.append(key)
upkeys.append(key.replace("lora_down", "lora_up"))
alphakeys.append(key.replace("lora_down.weight", "alpha"))
for i in range(len(downkeys)):
down = state_dict[downkeys[i]].to(device)
up = state_dict[upkeys[i]].to(device)
alpha = state_dict[alphakeys[i]].to(device)
dim = down.shape[0]
scale = alpha / dim
if up.shape[2:] == (1, 1) and down.shape[2:] == (1, 1):
updown = (up.squeeze(2).squeeze(2) @ down.squeeze(2).squeeze(2)).unsqueeze(2).unsqueeze(3)
elif up.shape[2:] == (3, 3) or down.shape[2:] == (3, 3):
updown = torch.nn.functional.conv2d(down.permute(1, 0, 2, 3), up).permute(1, 0, 2, 3)
else:
updown = up @ down
updown *= scale
norm = updown.norm().clamp(min=max_norm_value / 2)
desired = torch.clamp(norm, max=max_norm_value)
ratio = desired.cpu() / norm.cpu()
sqrt_ratio = ratio**0.5
if ratio != 1:
keys_scaled += 1
state_dict[upkeys[i]] *= sqrt_ratio
state_dict[downkeys[i]] *= sqrt_ratio
scalednorm = updown.norm() * ratio
norms.append(scalednorm.item())
return keys_scaled, sum(norms) / len(norms), max(norms) |