File size: 10,167 Bytes
4a2c956
e63ee0a
7c790c0
 
61b9ff7
59618c7
 
 
 
 
f1a7d6d
4c328b5
f1a7d6d
8a3d33f
f1a7d6d
 
59618c7
 
 
 
 
 
 
 
 
 
 
4a2c956
7c790c0
 
59618c7
f787cc5
42e5f71
 
 
f787cc5
42e5f71
f787cc5
59618c7
 
7c790c0
815dd65
 
59618c7
7c790c0
a00d592
7c790c0
59618c7
8a3d33f
 
 
 
 
e63ee0a
8a3d33f
e63ee0a
8a3d33f
 
 
2d1a42e
8a3d33f
e63ee0a
8a3d33f
e63ee0a
8a3d33f
 
5839066
8a3d33f
 
 
 
 
 
 
 
 
e63ee0a
59618c7
f85310d
 
 
 
 
 
 
 
e63ee0a
f85310d
 
f1a7d6d
e63ee0a
 
 
 
7c790c0
 
 
 
e63ee0a
 
750394b
 
 
7c790c0
 
 
 
 
 
ea2eccb
7c790c0
 
 
 
 
 
 
0886a44
 
7c790c0
 
 
 
 
 
 
 
 
 
e63ee0a
0b1be7c
 
 
 
29c4970
 
0083156
0b1be7c
 
 
 
7c790c0
 
59618c7
7c790c0
ce131c9
4c328b5
 
 
f1a7d6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c790c0
 
e63ee0a
 
59618c7
e63ee0a
a00d592
d93e535
f1a7d6d
e63ee0a
 
8a3d33f
 
4c328b5
8a3d33f
 
4c328b5
a00d592
8ecee14
 
 
e63ee0a
 
 
 
8105dac
626a16b
 
 
808ac51
 
 
 
e63ee0a
916a0ac
 
 
59618c7
4c328b5
e7333b0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import gradio as gr
import os, gc, copy, torch
from datetime import datetime
from huggingface_hub import hf_hub_download
from pynvml import *

# Flag to check if GPU is present
HAS_GPU = False

# Model title and context size limit
ctx_limit = 4000
title = "1B5"
model_file = "RWKV-5-World-1B5-v2-20231025-ctx4096"

#title = "RWKV-4-World"
#model_file = "RWKV-4-World-1.5B-v1-fixed-20230612-ctx4096"

# Get the GPU count
try:
    nvmlInit()
    GPU_COUNT = nvmlDeviceGetCount()
    if GPU_COUNT > 0:
        HAS_GPU = True
        gpu_h = nvmlDeviceGetHandleByIndex(0)
except NVMLError as error:
    print(error)


os.environ["RWKV_JIT_ON"] = '1'

# Model strat to use
MODEL_STRAT="cpu bf16"
os.environ["RWKV_CUDA_ON"] = '0' # if '1' then use CUDA kernel for seq mode (much faster)

# Switch to GPU mode
if HAS_GPU == True :
    os.environ["RWKV_CUDA_ON"] = '1' 
    MODEL_STRAT = "cuda bf16"

# Load the model accordingly
from rwkv.model import RWKV
model_path = hf_hub_download(repo_id="BlinkDL/rwkv-5-world", filename=f"{model_file}.pth")
#model_path = hf_hub_download(repo_id="BlinkDL/rwkv-4-world", filename=f"{model_file}.pth")
model = RWKV(model=model_path, strategy=MODEL_STRAT)
from rwkv.utils import PIPELINE, PIPELINE_ARGS
pipeline = PIPELINE(model, "rwkv_vocab_v20230424")

# Prompt generation
#def generate_prompt(instruction, input=""):
    #instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n')
    #input = input.strip().replace('\r\n','\n').replace('\n\n','\n')
    #if input:
        #return f"""Instruction: {instruction}

#Input: {input}

#Response:"""
    #else:
        #return f"""User: hi

#Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.

#User: {instruction}

#Assistant:"""

def generate_prompt(instruction, input=""):
    instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n').replace('\n\n','\n')
    input = input.strip().replace('\r\n','\n').replace('\n\n','\n').replace('\n\n','\n')
    if input:
        return f"""Instruction: {instruction}
Input: {input}
Response:"""
    else:
        return f"""Question: {instruction}
Answer:"""

# Evaluation logic
#def evaluate(
#    ctx,
#    token_count=200,
#    temperature=1.0,
#    top_p=0.7,
#    presencePenalty = 0.1,
#    countPenalty = 0.1,
#):
def evaluate(
    instruction,
    input=None,
    token_count=800,
    temperature=1.0,
    top_p=0.7,
    presencePenalty = 0.1,
    countPenalty = 0.1,
):
    args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p),
                     alpha_frequency = countPenalty,
                     alpha_presence = presencePenalty,
                     token_ban = [], # ban the generation of some tokens
                     token_stop = [0]) # stop generation whenever you see any token here
    #ctx = ctx.strip()
    ctx = generate_prompt(instruction, input)
    
    all_tokens = []
    out_last = 0
    out_str = ''
    occurrence = {}
    state = None
    for i in range(int(token_count)):
        out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state)
        for n in occurrence:
            out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)

        token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
        if token in args.token_stop:
            break
        all_tokens += [token]
        for xxx in occurrence:
            occurrence[xxx] *= 0.996        
        if token not in occurrence:
            occurrence[token] = 1
        else:
            occurrence[token] += 1
        
        tmp = pipeline.decode(all_tokens[out_last:])
        if '\ufffd' not in tmp:
            out_str += tmp
            yield out_str.strip()
            out_last = i + 1

    if HAS_GPU == True :
        gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
        print(f'vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')  
    
    del out
    del state
    gc.collect()

    if HAS_GPU == True :
        torch.cuda.empty_cache()
    
    yield out_str.strip()

# Examples and gradio blocks
examples = [
    ["Write a song about flowers.", "", 200, 1.2, 0.5, 0.4, 0.4],
    ["寫一篇關於交通工程的車流理論模型之論文,需要詳細全面。","", 600, 1.2, 0.5, 0.4, 0.4],
    ["根據以下資訊,寫一篇文情並茂的文章。", "一位中年男子為追求事業成就,不斷奮鬥突破眼前遇到的難關。", 600, 1.2, 0.5, 0.4, 0.4]
    
    #["Assistant: Sure! Here is a very detailed plan to create flying pigs:", 333, 1, 0.3, 0, 1],
    #["Assistant: Sure! Here are some ideas for FTL drive:", 333, 1, 0.3, 0, 1],
    #[generate_prompt("Tell me about ravens."), 333, 1, 0.3, 0, 1],
    #[generate_prompt("Écrivez un programme Python pour miner 1 Bitcoin, avec des commentaires."), 333, 1, 0.3, 0, 1],
    #[generate_prompt("東京で訪れるべき素晴らしい場所とその紹介をいくつか挙げてください。"), 333, 1, 0.3, 0, 1],
    #[generate_prompt("Write a story using the following information.", "A man named Alex chops a tree down."), 333, 1, 0.3, 0, 1],
    #["Assistant: Here is a very detailed plan to kill all mosquitoes:", 333, 1, 0.3, 0, 1],
    #['''Edward: I am Edward Elric from fullmetal alchemist. I am in the world of full metal alchemist and know nothing of the real world.

#User: Hello Edward. What have you been up to recently?

#Edward:''', 333, 1, 0.3, 0, 1],
    #[generate_prompt("写一篇关于水利工程的流体力学模型的论文,需要详细全面。"), 333, 1, 0.3, 0, 1],
    #['''“当然可以,大宇宙不会因为这五公斤就不坍缩了。”关一帆说,他还有一个没说出来的想法:也许大宇宙真的会因为相差一个原子的质量而由封闭转为开放。大自然的精巧有时超出想象,比如生命的诞生,就需要各项宇宙参数在几亿亿分之一精度上的精确配合。但程心仍然可以留下她的生态球,因为在那无数文明创造的无数小宇宙中,肯定有相当一部分不响应回归运动的号召,所以,大宇宙最终被夺走的质量至少有几亿吨,甚至可能是几亿亿亿吨。
#但愿大宇宙能够忽略这个误差。
#程心和关一帆进入了飞船,智子最后也进来了。她早就不再穿那身华丽的和服了,她现在身着迷彩服,再次成为一名轻捷精悍的战士,她的身上佩带着许多武器和生存装备,最引人注目的是那把插在背后的武士刀。
#“放心,我在,你们就在!”智子对两位人类朋友说。
#聚变发动机启动了,推进器发出幽幽的蓝光,飞船缓缓地穿过了宇宙之门。
#小宇宙中只剩下漂流瓶和生态球。漂流瓶隐没于黑暗里,在一千米见方的宇宙中,只有生态球里的小太阳发出一点光芒。在这个小小的生命世界中,几只清澈的水球在零重力环境中静静地飘浮着,有一条小鱼从一只水球中蹦出,跃入另一只水球,轻盈地穿游于绿藻之间。在一小块陆地上的草丛中,有一滴露珠从一片草叶上脱离,旋转着飘起,向太空中折射出一缕晶莹的阳光。''', 333, 1, 0.3, 0, 1],    
]

##########################################################################

# Gradio blocks
with gr.Blocks(title=title) as demo:
    gr.HTML(f"<div style=\"text-align: center;\">\n<h1>RWKV-5 World v2 - {title}</h1>\n</div>")
    with gr.Tab("Raw Generation"):
        gr.Markdown(f"This is [RWKV-5 World v2](https://huggingface.co/BlinkDL/rwkv-5-world) with 1.5B params - a 100% attention-free RNN [RWKV-LM](https://github.com/BlinkDL/RWKV-LM). Supports all 100+ world languages and code. And we hav Demo limited to ctxlen {ctx_limit}.")
        with gr.Row():
            with gr.Column():
                #prompt = gr.Textbox(lines=2, label="Prompt", value="Assistant: Sure! Here is a very detailed plan to create flying pigs:")

                instruction = gr.Textbox(lines=2, label="Instruction", value='Write a song about flowers.')
                input = gr.Textbox(lines=2, label="Input", placeholder="none")
                
                token_count = gr.Slider(10, 1000, label="Max Tokens", step=10, value=600)
                temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=1.0)
                top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.3)
                presence_penalty = gr.Slider(0.0, 1.0, label="Presence Penalty", step=0.1, value=0)
                count_penalty = gr.Slider(0.0, 1.0, label="Count Penalty", step=0.1, value=1)
            with gr.Column():
                with gr.Row():
                    submit = gr.Button("Submit", variant="primary")
                    clear = gr.Button("Clear", variant="secondary")
                output = gr.Textbox(label="Output", lines=5)
        #data = gr.Dataset(components=[prompt, token_count, temperature, top_p, presence_penalty, count_penalty], samples=examples, label="Example Instructions", headers=["Prompt", "Max Tokens", "Temperature", "Top P", "Presence Penalty", "Count Penalty"])
        data = gr.Dataset(components=[instruction, input, token_count, temperature, top_p, presence_penalty, count_penalty], samples=examples, label="Example Instructions", headers=["Instruction", "Input", "Max Tokens", "Temperature", "Top P", "Presence Penalty", "Count Penalty"])
        
        #submit.click(evaluate, [prompt, token_count, temperature, top_p, presence_penalty, count_penalty], [output])
        
        submit.click(evaluate, [instruction, input, token_count, temperature, top_p, presence_penalty, count_penalty], [output])
        
        clear.click(lambda: None, [], [output])
        #data.click(lambda x: x, [data], [prompt, token_count, temperature, top_p, presence_penalty, count_penalty])
        data.click(lambda x: x, [data], [instruction, input, token_count, temperature, top_p, presence_penalty, count_penalty])
    
# Gradio launch
demo.queue(concurrency_count=1, max_size=10)
demo.launch(share=False)