File size: 12,906 Bytes
4a2c956
e63ee0a
7c790c0
 
61b9ff7
 
 
699bb36
e63ee0a
4a2c956
7c790c0
 
 
 
e63ee0a
e176af0
7c790c0
 
 
e63ee0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c790c0
 
 
 
e63ee0a
 
7c790c0
e63ee0a
 
 
61b9ff7
7c790c0
 
 
 
 
 
ea2eccb
7c790c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e63ee0a
 
 
 
0083156
 
7c790c0
 
 
e63ee0a
 
 
 
 
 
 
7c790c0
 
e63ee0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c790c0
e63ee0a
7c790c0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import gradio as gr
import os, gc, copy, torch
from datetime import datetime
from huggingface_hub import hf_hub_download
from pynvml import *
nvmlInit()
gpu_h = nvmlDeviceGetHandleByIndex(0)
ctx_limit = 1024
title = "RWKV-4-Raven-14B-v10-Eng99%-Other1%-20230427-ctx8192"

os.environ["RWKV_JIT_ON"] = '1'
os.environ["RWKV_CUDA_ON"] = '1' # if '1' then use CUDA kernel for seq mode (much faster)

from rwkv.model import RWKV
model_path = hf_hub_download(repo_id="BlinkDL/rwkv-4-raven", filename=f"{title}.pth")
model = RWKV(model=model_path, strategy='cuda fp16i8 *24 -> cuda fp16')
from rwkv.utils import PIPELINE, PIPELINE_ARGS
pipeline = PIPELINE(model, "20B_tokenizer.json")

def generate_prompt(instruction, input=None):
    instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n')
    input = input.strip().replace('\r\n','\n').replace('\n\n','\n')
    if input:
        return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

# Instruction:
{instruction}

# Input:
{input}

# Response:
"""
    else:
        return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.

# Instruction:
{instruction}

# Response:
"""

def evaluate(
    instruction,
    input=None,
    token_count=200,
    temperature=1.0,
    top_p=0.7,
    presencePenalty = 0.1,
    countPenalty = 0.1,
):
    args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p),
                     alpha_frequency = countPenalty,
                     alpha_presence = presencePenalty,
                     token_ban = [], # ban the generation of some tokens
                     token_stop = [0]) # stop generation whenever you see any token here

    instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n')
    input = input.strip().replace('\r\n','\n').replace('\n\n','\n')
    ctx = generate_prompt(instruction, input)
    
    all_tokens = []
    out_last = 0
    out_str = ''
    occurrence = {}
    state = None
    for i in range(int(token_count)):
        out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state)
        for n in occurrence:
            out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)

        token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
        if token in args.token_stop:
            break
        all_tokens += [token]
        if token not in occurrence:
            occurrence[token] = 1
        else:
            occurrence[token] += 1
        
        tmp = pipeline.decode(all_tokens[out_last:])
        if '\ufffd' not in tmp:
            out_str += tmp
            yield out_str.strip()
            out_last = i + 1

    gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
    print(f'vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')  

    gc.collect()
    torch.cuda.empty_cache()
    yield out_str.strip()

examples = [
    ["Tell me about ravens.", "", 150, 1.2, 0.5, 0.4, 0.4],
    ["Write a python function to mine 1 BTC, with details and comments.", "", 150, 1.2, 0.5, 0.4, 0.4],
    ["Write a song about ravens.", "", 150, 1.2, 0.5, 0.4, 0.4],
    ["Explain the following metaphor: Life is like cats.", "", 150, 1.2, 0.5, 0.4, 0.4],
    ["Write a story using the following information", "A man named Alex chops a tree down", 150, 1.2, 0.5, 0.4, 0.4],
    ["Generate a list of adjectives that describe a person as brave.", "", 150, 1.2, 0.5, 0.4, 0.4],
    ["You have $100, and your goal is to turn that into as much money as possible with AI and Machine Learning. Please respond with detailed plan.", "", 150, 1.2, 0.5, 0.4, 0.4],
]

##########################################################################

chat_intro = '''The following is a coherent verbose detailed conversation between <|user|> and an AI girl named <|bot|>.

<|user|>: Hi <|bot|>, Would you like to chat with me for a while?

<|bot|>: Hi <|user|>. Sure. What would you like to talk about? I'm listening.
'''

def user(message, chatbot):
    chatbot = chatbot or []
    # print(f"User: {message}")
    return "", chatbot + [[message, None]]

def alternative(chatbot, history):
    if not chatbot or not history:
        return chatbot, history
    
    chatbot[-1][1] = None
    history[0] = copy.deepcopy(history[1])

    return chatbot, history

def chat(
        prompt,
        user,
        bot,
        chatbot,
        history,
        temperature=1.0,
        top_p=0.8,
        presence_penalty=0.1,
        count_penalty=0.1,
):
    args = PIPELINE_ARGS(temperature=max(0.2, float(temperature)), top_p=float(top_p),
                         alpha_frequency=float(count_penalty),
                         alpha_presence=float(presence_penalty),
                         token_ban=[],  # ban the generation of some tokens
                         token_stop=[])  # stop generation whenever you see any token here
    
    if not chatbot:
        return chatbot, history

    message = chatbot[-1][0]
    message = message.strip().replace('\r\n','\n').replace('\n\n','\n')
    ctx = f"{user}: {message}\n\n{bot}:"

    if not history:
        prompt = prompt.replace("<|user|>", user.strip())
        prompt = prompt.replace("<|bot|>", bot.strip())
        prompt = prompt.strip()
        prompt = f"\n{prompt}\n\n"

        out, state = model.forward(pipeline.encode(prompt), None)
        history = [state, None, []]  # [state, state_pre, tokens]
        # print("History reloaded.")

    [state, _, all_tokens] = history
    state_pre_0 = copy.deepcopy(state)

    out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:], state)
    state_pre_1 = copy.deepcopy(state)    # For recovery

    # print("Bot:", end='')

    begin = len(all_tokens)
    out_last = begin
    out_str: str = ''
    occurrence = {}
    for i in range(300):
        if i <= 0:
            nl_bias = -float('inf')
        elif i <= 30:
            nl_bias = (i - 30) * 0.1
        elif i <= 130:
            nl_bias = 0
        else:
            nl_bias = (i - 130) * 0.25
        out[187] += nl_bias
        for n in occurrence:
            out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)

        token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
        next_tokens = [token]
        if token == 0:
            next_tokens = pipeline.encode('\n\n')
        all_tokens += next_tokens

        if token not in occurrence:
            occurrence[token] = 1
        else:
            occurrence[token] += 1

        out, state = model.forward(next_tokens, state)

        tmp = pipeline.decode(all_tokens[out_last:])
        if '\ufffd' not in tmp:
            # print(tmp, end='', flush=True)
            out_last = begin + i + 1
            out_str += tmp

            chatbot[-1][1] = out_str.strip()
            history = [state, all_tokens]
            yield chatbot, history

        out_str = pipeline.decode(all_tokens[begin:])
        out_str = out_str.replace("\r\n", '\n').replace('\\n', '\n')

        if '\n\n' in out_str:
            break

        # State recovery
        if f'{user}:' in out_str or f'{bot}:' in out_str:
            idx_user = out_str.find(f'{user}:')
            idx_user = len(out_str) if idx_user == -1 else idx_user
            idx_bot = out_str.find(f'{bot}:')
            idx_bot = len(out_str) if idx_bot == -1 else idx_bot
            idx = min(idx_user, idx_bot)

            if idx < len(out_str):
                out_str = f" {out_str[:idx].strip()}\n\n"
                tokens = pipeline.encode(out_str)

                all_tokens = all_tokens[:begin] + tokens
                out, state = model.forward(tokens, state_pre_1)
                break

    gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
    print(f'vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')  

    gc.collect()
    torch.cuda.empty_cache()

    chatbot[-1][1] = out_str.strip()
    history = [state, state_pre_0, all_tokens]
    yield chatbot, history

##########################################################################

with gr.Blocks(title=title) as demo:
    gr.HTML(f"<div style=\"text-align: center;\">\n<h1>🐦Raven - {title}</h1>\n</div>")
    with gr.Tab("Instruct mode"):
        gr.Markdown(f"Raven is [RWKV 14B](https://github.com/BlinkDL/ChatRWKV) 100% RNN [RWKV-LM](https://github.com/BlinkDL/RWKV-LM) finetuned to follow instructions. *** Please try examples first (bottom of page) *** (edit them to use your question). Demo limited to ctxlen {ctx_limit}. Finetuned on alpaca, gpt4all, codealpaca and more. For best results, *** keep you prompt short and clear ***. <b>UPDATE: now with Chat (see above, as a tab)</b>.")
        with gr.Row():
            with gr.Column():
                instruction = gr.Textbox(lines=2, label="Instruction", value="Tell me about ravens.")
                input = gr.Textbox(lines=2, label="Input", placeholder="none")
                token_count = gr.Slider(10, 200, label="Max Tokens", step=10, value=150)
                temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=1.2)
                top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.5)
                presence_penalty = gr.Slider(0.0, 1.0, label="Presence Penalty", step=0.1, value=0.4)
                count_penalty = gr.Slider(0.0, 1.0, label="Count Penalty", step=0.1, value=0.4)
            with gr.Column():
                with gr.Row():
                    submit = gr.Button("Submit", variant="primary")
                    clear = gr.Button("Clear", variant="secondary")
                output = gr.Textbox(label="Output", lines=5)
        data = gr.Dataset(components=[instruction, input, token_count, temperature, top_p, presence_penalty, count_penalty], samples=examples, label="Example Instructions", headers=["Instruction", "Input", "Max Tokens", "Temperature", "Top P", "Presence Penalty", "Count Penalty"])
        submit.click(evaluate, [instruction, input, token_count, temperature, top_p, presence_penalty, count_penalty], [output])
        clear.click(lambda: None, [], [output])
        data.click(lambda x: x, [data], [instruction, input, token_count, temperature, top_p, presence_penalty, count_penalty])
    
    with gr.Tab("Chat (Experimental - Might be buggy - use ChatRWKV for reference)"):
        gr.Markdown(f'''<b>*** The length of response is restricted in this demo. Use ChatRWKV for longer generations. ***</b> Say "go on" or "continue" can sometimes continue the response. If you'd like to edit the scenario, make sure to follow the exact same format: empty lines between (and only between) different speakers. Changes only take effect after you press [Clear]. <b>The default "Bob" & "Alice" names work the best.</b>''', label="Description")
        with gr.Row():
            with gr.Column():
                chatbot = gr.Chatbot()
                state = gr.State()
                message = gr.Textbox(label="Message", value="Write me a python code to land on moon.")
                with gr.Row():
                    send = gr.Button("Send", variant="primary")
                    alt = gr.Button("Alternative", variant="secondary")
                    clear = gr.Button("Clear", variant="secondary")
            with gr.Column():
                with gr.Row():
                    user_name = gr.Textbox(lines=1, max_lines=1, label="User Name", value="Bob")
                    bot_name = gr.Textbox(lines=1, max_lines=1, label="Bot Name", value="Alice")
                prompt = gr.Textbox(lines=10, max_lines=50, label="Scenario", value=chat_intro)
                temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=1.2)
                top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.5)
                presence_penalty = gr.Slider(0.0, 1.0, label="Presence Penalty", step=0.1, value=0.4)
                count_penalty = gr.Slider(0.0, 1.0, label="Count Penalty", step=0.1, value=0.4)
        chat_inputs = [
            prompt,
            user_name,
            bot_name,
            chatbot,
            state,
            temperature,
            top_p,
            presence_penalty,
            count_penalty
        ]
        chat_outputs = [chatbot, state]
        message.submit(user, [message, chatbot], [message, chatbot], queue=False).then(chat, chat_inputs, chat_outputs)
        send.click(user, [message, chatbot], [message, chatbot], queue=False).then(chat, chat_inputs, chat_outputs)
        alt.click(alternative, [chatbot, state], [chatbot, state], queue=False).then(chat, chat_inputs, chat_outputs)
        clear.click(lambda: ([], None, ""), [], [chatbot, state, message], queue=False)

demo.queue(concurrency_count=1, max_size=10)
demo.launch(share=False)