Spaces:
Sleeping
Sleeping
File size: 13,650 Bytes
71c714a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
#!/usr/bin/env python3
"""
Function used for visualization of data and results
Author: Shilpaj Bhalerao
Date: Jun 21, 2023
"""
# Standard Library Imports
import math
from dataclasses import dataclass
from typing import NoReturn
import io
from PIL import Image
# Third-Party Imports
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sn
import torch
import torch.nn as nn
from torchvision import transforms
from sklearn.metrics import confusion_matrix
# ---------------------------- DATA SAMPLES ----------------------------
def display_mnist_data_samples(dataset, number_of_samples: int) -> NoReturn:
"""
Function to display samples for dataloader
:param dataset: Train or Test dataset transformed to Tensor
:param number_of_samples: Number of samples to be displayed
"""
# Get batch from the data_set
batch_data = []
batch_label = []
for count, item in enumerate(dataset):
if not count <= number_of_samples:
break
batch_data.append(item[0])
batch_label.append(item[1])
# Plot the samples from the batch
fig = plt.figure()
x_count = 5
y_count = 1 if number_of_samples <= 5 else math.floor(number_of_samples / x_count)
# Plot the samples from the batch
for i in range(number_of_samples):
plt.subplot(y_count, x_count, i + 1)
plt.tight_layout()
plt.imshow(batch_data[i].squeeze(), cmap='gray')
plt.title(batch_label[i])
plt.xticks([])
plt.yticks([])
def display_cifar_data_samples(data_set, number_of_samples: int, classes: list):
"""
Function to display samples for data_set
:param data_set: Train or Test data_set transformed to Tensor
:param number_of_samples: Number of samples to be displayed
:param classes: Name of classes to be displayed
"""
# Get batch from the data_set
batch_data = []
batch_label = []
for count, item in enumerate(data_set):
if not count <= number_of_samples:
break
batch_data.append(item[0])
batch_label.append(item[1])
batch_data = torch.stack(batch_data, dim=0).numpy()
# Plot the samples from the batch
fig = plt.figure()
x_count = 5
y_count = 1 if number_of_samples <= 5 else math.floor(number_of_samples / x_count)
for i in range(number_of_samples):
plt.subplot(y_count, x_count, i + 1)
plt.tight_layout()
plt.imshow(np.transpose(batch_data[i].squeeze(), (1, 2, 0)))
plt.title(classes[batch_label[i]])
plt.xticks([])
plt.yticks([])
# ---------------------------- MISCLASSIFIED DATA ----------------------------
def display_cifar_misclassified_data(data: list,
classes,
inv_normalize: transforms.Normalize,
number_of_samples: int = 10):
"""
Function to plot images with labels
:param data: List[Tuple(image, label)]
:param classes: Name of classes in the dataset
:param inv_normalize: Mean and Standard deviation values of the dataset
:param number_of_samples: Number of images to print
"""
fig = plt.figure(figsize=(10, 10))
x_count = 5
y_count = math.ceil(number_of_samples / x_count)
for i in range(number_of_samples):
plt.subplot(y_count, x_count, i + 1)
img = data[i][0].squeeze().to('cpu')
img = inv_normalize(img)
plt.imshow(np.transpose(img, (1, 2, 0)))
plt.title(r"Correct: " + classes[data[i][1].item()] + '\n' + 'Output: ' + classes[data[i][2].item()])
plt.xticks([])
plt.yticks([])
plt.tight_layout()
# Save the entire figure to a BytesIO object
buftwo = io.BytesIO()
plt.savefig(buftwo, format='png')
buftwo.seek(0)
img_var = Image.open(buftwo)
# Optional: Close the buffer
return img_var
def display_mnist_misclassified_data(data: list,
number_of_samples: int = 10):
"""
Function to plot images with labels
:param data: List[Tuple(image, label)]
:param number_of_samples: Number of images to print
"""
fig = plt.figure(figsize=(8, 5))
x_count = 5
y_count = 1 if number_of_samples <= 5 else math.floor(number_of_samples / x_count)
for i in range(number_of_samples):
plt.subplot(y_count, x_count, i + 1)
img = data[i][0].squeeze(0).to('cpu')
plt.imshow(np.transpose(img, (1, 2, 0)), cmap='gray')
plt.title(r"Correct: " + str(data[i][1].item()) + '\n' + 'Output: ' + str(data[i][2].item()))
plt.xticks([])
plt.yticks([])
# ---------------------------- AUGMENTATION SAMPLES ----------------------------
def visualize_cifar_augmentation(data_set, data_transforms):
"""
Function to visualize the augmented data
:param data_set: Dataset without transformations
:param data_transforms: Dictionary of transforms
"""
sample, label = data_set[6]
total_augmentations = len(data_transforms)
fig = plt.figure(figsize=(10, 5))
for count, (key, trans) in enumerate(data_transforms.items()):
if count == total_augmentations - 1:
break
plt.subplot(math.ceil(total_augmentations / 5), 5, count + 1)
augmented = trans(image=sample)['image']
plt.imshow(augmented)
plt.title(key)
plt.xticks([])
plt.yticks([])
def visualize_mnist_augmentation(data_set, data_transforms):
"""
Function to visualize the augmented data
:param data_set: Dataset to visualize the augmentations
:param data_transforms: Dictionary of transforms
"""
sample, label = data_set[6]
total_augmentations = len(data_transforms)
fig = plt.figure(figsize=(10, 5))
for count, (key, trans) in enumerate(data_transforms.items()):
if count == total_augmentations - 1:
break
plt.subplot(math.ceil(total_augmentations / 5), 5, count + 1)
img = trans(sample).to('cpu')
plt.imshow(np.transpose(img, (1, 2, 0)), cmap='gray')
plt.title(key)
plt.xticks([])
plt.yticks([])
# ---------------------------- LOSS AND ACCURACIES ----------------------------
def display_loss_and_accuracies(train_losses: list,
train_acc: list,
test_losses: list,
test_acc: list,
plot_size: tuple = (10, 10)) -> NoReturn:
"""
Function to display training and test information(losses and accuracies)
:param train_losses: List containing training loss of each epoch
:param train_acc: List containing training accuracy of each epoch
:param test_losses: List containing test loss of each epoch
:param test_acc: List containing test accuracy of each epoch
:param plot_size: Size of the plot
"""
# Create a plot of 2x2 of size
fig, axs = plt.subplots(2, 2, figsize=plot_size)
# Plot the training loss and accuracy for each epoch
axs[0, 0].plot(train_losses)
axs[0, 0].set_title("Training Loss")
axs[1, 0].plot(train_acc)
axs[1, 0].set_title("Training Accuracy")
# Plot the test loss and accuracy for each epoch
axs[0, 1].plot(test_losses)
axs[0, 1].set_title("Test Loss")
axs[1, 1].plot(test_acc)
axs[1, 1].set_title("Test Accuracy")
# ---------------------------- Feature Maps and Kernels ----------------------------
@dataclass
class ConvLayerInfo:
"""
Data Class to store Conv layer's information
"""
layer_number: int
weights: torch.nn.parameter.Parameter
layer_info: torch.nn.modules.conv.Conv2d
class FeatureMapVisualizer:
"""
Class to visualize Feature Map of the Layers
"""
def __init__(self, model):
"""
Contructor
:param model: Model Architecture
"""
self.conv_layers = []
self.outputs = []
self.layerwise_kernels = None
# Disect the model
counter = 0
model_children = model.children()
for children in model_children:
if type(children) == nn.Sequential:
for child in children:
if type(child) == nn.Conv2d:
counter += 1
self.conv_layers.append(ConvLayerInfo(layer_number=counter,
weights=child.weight,
layer_info=child)
)
def get_model_weights(self):
"""
Method to get the model weights
"""
model_weights = [layer.weights for layer in self.conv_layers]
return model_weights
def get_conv_layers(self):
"""
Get the convolution layers
"""
conv_layers = [layer.layer_info for layer in self.conv_layers]
return conv_layers
def get_total_conv_layers(self) -> int:
"""
Get total number of convolution layers
"""
out = self.get_conv_layers()
return len(out)
def feature_maps_of_all_kernels(self, image: torch.Tensor) -> dict:
"""
Get feature maps from all the kernels of all the layers
:param image: Image to be passed to the network
"""
image = image.unsqueeze(0)
image = image.to('cpu')
outputs = {}
layers = self.get_conv_layers()
for index, layer in enumerate(layers):
image = layer(image)
outputs[str(layer)] = image
self.outputs = outputs
return outputs
def visualize_feature_map_of_kernel(self, image: torch.Tensor, kernel_number: int) -> None:
"""
Function to visualize feature map of kernel number from each layer
:param image: Image passed to the network
:param kernel_number: Number of kernel in each layer (Should be less than or equal to the minimum number of kernel in the network)
"""
# List to store processed feature maps
processed = []
# Get feature maps from all kernels of all the conv layers
outputs = self.feature_maps_of_all_kernels(image)
# Extract the n_th kernel's output from each layer and convert it to grayscale
for feature_map in outputs.values():
try:
feature_map = feature_map[0][kernel_number]
except IndexError:
print("Filter number should be less than the minimum number of channels in a network")
break
finally:
gray_scale = feature_map / feature_map.shape[0]
processed.append(gray_scale.data.numpy())
# Plot the Feature maps with layer and kernel number
x_range = len(outputs) // 5 + 4
fig = plt.figure(figsize=(10, 10))
for i in range(len(processed)):
a = fig.add_subplot(x_range, 5, i + 1)
imgplot = plt.imshow(processed[i])
a.axis("off")
title = f"{list(outputs.keys())[i].split('(')[0]}_l{i + 1}_k{kernel_number}"
a.set_title(title, fontsize=10)
def get_max_kernel_number(self):
"""
Function to get maximum number of kernels in the network (for a layer)
"""
layers = self.get_conv_layers()
channels = [layer.out_channels for layer in layers]
self.layerwise_kernels = channels
return max(channels)
def visualize_kernels_from_layer(self, layer_number: int):
"""
Visualize Kernels from a layer
:param layer_number: Number of layer from which kernels are to be visualized
"""
# Get the kernels number for each layer
self.get_max_kernel_number()
# Zero Indexing
layer_number = layer_number - 1
_kernels = self.layerwise_kernels[layer_number]
grid = math.ceil(math.sqrt(_kernels))
plt.figure(figsize=(5, 4))
model_weights = self.get_model_weights()
_layer_weights = model_weights[layer_number].cpu()
for i, filter in enumerate(_layer_weights):
plt.subplot(grid, grid, i + 1)
plt.imshow(filter[0, :, :].detach(), cmap='gray')
plt.axis('off')
plt.show()
# ---------------------------- Confusion Matrix ----------------------------
def visualize_confusion_matrix(classes, device: str, model,
test_loader: torch.utils.data.DataLoader):
"""
Function to generate and visualize confusion matrix
:param classes: List of class names
:param device: cuda/cpu
:param model: Model Architecture
:param test_loader: DataLoader for test set
"""
nb_classes = len(classes)
device = 'cuda'
cm = torch.zeros(nb_classes, nb_classes)
model.eval()
with torch.no_grad():
for inputs, labels in test_loader:
inputs = inputs.to(device)
labels = labels.to(device)
model = model.to(device)
preds = model(inputs)
preds = preds.argmax(dim=1)
for t, p in zip(labels.view(-1), preds.view(-1)):
cm[t, p] = cm[t, p] + 1
# Build confusion matrix
labels = labels.to('cpu')
preds = preds.to('cpu')
cf_matrix = confusion_matrix(labels, preds)
df_cm = pd.DataFrame(cf_matrix / np.sum(cf_matrix, axis=1)[:, None],
index=[i for i in classes],
columns=[i for i in classes])
plt.figure(figsize=(12, 7))
sn.heatmap(df_cm, annot=True)
|