File size: 1,089 Bytes
6df2d37
 
 
f1234fd
 
 
6df2d37
 
 
 
 
f1234fd
 
 
6df2d37
 
f1234fd
6df2d37
 
 
 
 
 
 
f1234fd
6df2d37
 
f1234fd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
# Load the GPT-2 large model and tokenizer
model_name = "gpt2-large"
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Add padding token to the tokenizer
tokenizer.pad_token = tokenizer.eos_token  # Set padding token to EOS token

model = AutoModelForCausalLM.from_pretrained(model_name)

# Function to generate a blog post based on a topic title
def generate_blog(topic_title, max_length=300):
    # Step 1: Encode the input
    inputs = tokenizer.encode_plus(topic_title, return_tensors='pt', padding=True)
    input_ids = inputs['input_ids']
    attention_mask = inputs['attention_mask']
    
    # Step 2: Generate model output
    output_ids = model.generate(input_ids, attention_mask=attention_mask, max_length=max_length, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id)
    
    # Step 3: Decode the output
    blog_post = tokenizer.decode(output_ids[0], skip_special_tokens=True)
    
    return blog_post

# Example usage
topic_title = input("Enter title for the blog: ")
blog_post = generate_blog(topic_title)
print("\nGenerated Blog Post:\n")
print(blog_post)