File size: 7,581 Bytes
634d7ce
 
 
 
 
 
 
6e711d0
634d7ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
888c7e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
634d7ce
5f99c38
634d7ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
######### pull files
import os
from huggingface_hub import hf_hub_download
config_path=hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-100M-multi-temporal-crop-classification", 
                            filename="multi_temporal_crop_classification_Prithvi_100M.py", 
                            token=os.environ.get("token"))
ckpt=hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-100M-multi-temporal-crop-classification", 
                     filename='multi_temporal_crop_classification_Prithvi_100M.pth', 
                     token=os.environ.get("token"))
##########
import argparse
from mmcv import Config

from mmseg.models import build_segmentor

from mmseg.datasets.pipelines import Compose, LoadImageFromFile

import rasterio
import torch

from mmseg.apis import init_segmentor

from mmcv.parallel import collate, scatter

import numpy as np
import glob
import os

import time

import numpy as np
import gradio as gr
from functools import partial

import pdb

import matplotlib.pyplot as plt


def open_tiff(fname):
    
    with rasterio.open(fname, "r") as src:
        
        data = src.read()
        
    return data

def write_tiff(img_wrt, filename, metadata):

    """
    It writes a raster image to file.

    :param img_wrt: numpy array containing the data (can be 2D for single band or 3D for multiple bands)
    :param filename: file path to the output file
    :param metadata: metadata to use to write the raster to disk
    :return:
    """

    with rasterio.open(filename, "w", **metadata) as dest:

        if len(img_wrt.shape) == 2:
            
            img_wrt = img_wrt[None]

        for i in range(img_wrt.shape[0]):
            dest.write(img_wrt[i, :, :], i + 1)
    
    return filename
            

def get_meta(fname):
    
    with rasterio.open(fname, "r") as src:
        
        meta = src.meta
        
    return meta

def preprocess_example(example_list):
    
    example_list = [os.path.join(os.path.abspath(''), x) for x in example_list]
    
    return example_list


def inference_segmentor(model, imgs, custom_test_pipeline=None):
    """Inference image(s) with the segmentor.

    Args:
        model (nn.Module): The loaded segmentor.
        imgs (str/ndarray or list[str/ndarray]): Either image files or loaded
            images.

    Returns:
        (list[Tensor]): The segmentation result.
    """
    cfg = model.cfg
    device = next(model.parameters()).device  # model device
    # build the data pipeline
    test_pipeline = [LoadImageFromFile()] + cfg.data.test.pipeline[1:] if custom_test_pipeline == None else custom_test_pipeline
    test_pipeline = Compose(test_pipeline)
    # prepare data
    data = []
    imgs = imgs if isinstance(imgs, list) else [imgs]
    for img in imgs:
        img_data = {'img_info': {'filename': img}}
        img_data = test_pipeline(img_data)
        data.append(img_data)
    # print(data.shape)
    
    data = collate(data, samples_per_gpu=len(imgs))
    if next(model.parameters()).is_cuda:
        # data = collate(data, samples_per_gpu=len(imgs))
        # scatter to specified GPU
        data = scatter(data, [device])[0]
    else:
        # img_metas = scatter(data['img_metas'],'cpu')
        # data['img_metas'] = [i.data[0] for i in data['img_metas']]
        
        img_metas = data['img_metas'].data[0]
        img = data['img']
        data = {'img': img, 'img_metas':img_metas}
    
    with torch.no_grad():
        result = model(return_loss=False, rescale=True, **data)
    return result


def inference_on_file(target_image, model, custom_test_pipeline):

    target_image = target_image.name
    # print(type(target_image))

    # output_image = target_image.replace('.tif', '_pred.tif')
    time_taken=-1
    st = time.time()
    print('Running inference...')
    result = inference_segmentor(model, target_image, custom_test_pipeline)
    print("Output has shape: " + str(result[0].shape))

    ##### get metadata mask
    mask = open_tiff(target_image)
    # rgb = mask[[2, 1, 0], :, :].transpose((1,2,0))
    rgb1 = mask[[2, 1, 0], :, :].transpose((1,2,0))
    rgb2 = mask[[8, 7, 6], :, :].transpose((1,2,0))
    rgb3 = mask[[14, 13, 12], :, :].transpose((1,2,0))
    meta = get_meta(target_image)
    mask = np.where(mask == meta['nodata'], 1, 0)
    mask = np.max(mask, axis=0)[None]

    result[0] = np.where(mask == 1, -1, result[0])

    ##### Save file to disk
    meta["count"] = 1
    meta["dtype"] = "int16"
    meta["compress"] = "lzw"
    meta["nodata"] = -1
    print('Saving output...')
    # write_tiff(result[0], output_image, meta)
    et = time.time()
    time_taken = np.round(et - st, 1)
    print(f'Inference completed in {str(time_taken)} seconds')
        
    return rgb1,rgb2,rgb3, result[0][0]

def process_test_pipeline(custom_test_pipeline, bands=None):
    
    # change extracted bands if necessary
    if bands is not None:
        
        extract_index = [i for i, x in enumerate(custom_test_pipeline) if x['type'] == 'BandsExtract' ]
        
        if len(extract_index) > 0:
            
            custom_test_pipeline[extract_index[0]]['bands'] = eval(bands)
            
    collect_index = [i for i, x in enumerate(custom_test_pipeline) if x['type'].find('Collect') > -1]
    
    # adapt collected keys if necessary
    if len(collect_index) > 0:
        
        keys = ['img_info', 'filename', 'ori_filename', 'img', 'img_shape', 'ori_shape', 'pad_shape', 'scale_factor', 'img_norm_cfg']
        custom_test_pipeline[collect_index[0]]['meta_keys'] = keys
    
    return custom_test_pipeline

config = Config.fromfile(config_path)
config.model.backbone.pretrained=None
model = init_segmentor(config, ckpt, device='cpu')
custom_test_pipeline=process_test_pipeline(model.cfg.data.test.pipeline, None)

func = partial(inference_on_file, model=model, custom_test_pipeline=custom_test_pipeline)

with gr.Blocks() as demo:
   
    gr.Markdown(value='# Prithvi multi temporal crop classification')
    gr.Markdown(value='''Prithvi is a first-of-its-kind temporal Vision transformer pretrained by the IBM and NASA team on continental US Harmonised Landsat Sentinel 2 (HLS) data. This demo showcases how the model was finetuned to classify crop and other land use categories using multi temporal data. More detailes can be found [here](https://huggingface.co/ibm-nasa-geospatial/Prithvi-100M-multi-temporal-crop-classification).\n
    The user needs to provide an HLS geotiff image, including 18 bands for 3 time-step, and each time-step includes the channels described above (Blue, Green, Red, Narrow NIR, SWIR, SWIR 2) in order.
    ''')
    with gr.Row():
        with gr.Column():
            inp = gr.File()
            btn = gr.Button("Submit")
    
    with gr.Row():
        gr.Markdown(value='### T1')
        gr.Markdown(value='### T2')
        gr.Markdown(value='### T3')
        gr.Markdown(value='### Model prediction')
        
    with gr.Row():
        inp1=gr.Image(image_mode='RGB')
        inp2=gr.Image(image_mode='RGB')
        inp3=gr.Image(image_mode='RGB')
        out = gr.Image(image_mode='L')
    
    btn.click(fn=func, inputs=inp, outputs=[inp1, inp2, inp3, out])
    
    with gr.Row():
        gr.Examples(examples=["chip_102_345_merged.tif",
                     "chip_104_104_merged.tif",
                     "chip_109_421_merged.tif"],
                    inputs=inp,
                    outputs=[inp1, inp2, inp3, out],
                    preprocess=preprocess_example,
                    fn=func,
                    cache_examples=True,
    )

demo.launch()