File size: 10,384 Bytes
b585c7f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
from __future__ import annotations
import base64
import io
import time
from io import BytesIO
import numpy as np
import scipy
import wavio
import soundfile as sf
import torch
import librosa
from src.tts_sentence_parsing import init_sentence_state, get_sentence
from src.tts_utils import prepare_speech, get_no_audio, chunk_speed_change
speaker_embeddings = {
"BDL": "spkemb/cmu_us_bdl_arctic-wav-arctic_a0009.npy",
"CLB": "spkemb/cmu_us_clb_arctic-wav-arctic_a0144.npy",
"KSP": "spkemb/cmu_us_ksp_arctic-wav-arctic_b0087.npy",
"RMS": "spkemb/cmu_us_rms_arctic-wav-arctic_b0353.npy",
"SLT": "spkemb/cmu_us_slt_arctic-wav-arctic_a0508.npy",
}
def get_speech_model():
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
import torch
from datasets import load_dataset
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") # .to("cuda:0")
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to("cuda:0")
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to("cuda:0")
# load xvector containing speaker's voice characteristics from a dataset
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
speaker_embedding = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0).to("cuda:0")
return processor, model, vocoder, speaker_embedding
def gen_t5(text, processor=None, model=None, speaker_embedding=None, vocoder=None):
inputs = processor(text=text, return_tensors="pt").to(model.device)
speech = model.generate_speech(inputs["input_ids"], speaker_embedding, vocoder=vocoder)
sf.write("speech.wav", speech.cpu().numpy(), samplerate=16000)
def get_tts_model(t5_model="microsoft/speecht5_tts",
t5_gan_model="microsoft/speecht5_hifigan",
use_gpu=True,
gpu_id='auto'):
if gpu_id == 'auto':
gpu_id = 0
if use_gpu:
device = 'cuda:%d' % gpu_id
else:
device = 'cpu'
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
processor = SpeechT5Processor.from_pretrained(t5_model)
model = SpeechT5ForTextToSpeech.from_pretrained(t5_model).to(device)
vocoder = SpeechT5HifiGan.from_pretrained(t5_gan_model).to(model.device)
return processor, model, vocoder
def get_speakers():
return ["SLT (female)",
"BDL (male)",
"CLB (female)",
"KSP (male)",
"RMS (male)",
"Surprise Me!",
"None",
]
def get_speakers_gr(value=None):
import gradio as gr
choices = get_speakers()
if value is None:
value = choices[0]
return gr.Dropdown(label="Speech Style",
choices=choices,
value=value)
def process_audio(sampling_rate, waveform):
# convert from int16 to floating point
waveform = waveform / 32678.0
# convert to mono if stereo
if len(waveform.shape) > 1:
waveform = librosa.to_mono(waveform.T)
# resample to 16 kHz if necessary
if sampling_rate != 16000:
waveform = librosa.resample(waveform, orig_sr=sampling_rate, target_sr=16000)
# limit to 30 seconds
waveform = waveform[:16000 * 30]
# make PyTorch tensor
waveform = torch.tensor(waveform)
return waveform
def predict_from_audio(processor, model, speaker_embedding, vocoder, audio, mic_audio=None, sr=16000):
# audio = tuple (sample_rate, frames) or (sample_rate, (frames, channels))
if mic_audio is not None:
sampling_rate, waveform = mic_audio
elif audio is not None:
sampling_rate, waveform = audio
else:
return sr, np.zeros(0).astype(np.int16)
waveform = process_audio(sampling_rate, waveform)
inputs = processor(audio=waveform, sampling_rate=sr, return_tensors="pt")
speech = model.generate_speech(inputs["input_values"], speaker_embedding, vocoder=vocoder)
speech = (speech.numpy() * 32767).astype(np.int16)
return sr, speech
def generate_speech(response, speaker,
model=None, processor=None, vocoder=None,
speaker_embedding=None,
sentence_state=None,
sr=16000,
tts_speed=1.0,
return_as_byte=True, return_gradio=False,
is_final=False, verbose=False):
if response:
if model is None or processor is None or vocoder is None:
processor, model, vocoder = get_tts_model()
if sentence_state is None:
sentence_state = init_sentence_state()
sentence, sentence_state, _ = get_sentence(response, sentence_state=sentence_state, is_final=is_final,
verbose=verbose)
else:
sentence = ''
if sentence:
if verbose:
print("begin _predict_from_text")
audio = _predict_from_text(sentence, speaker, processor=processor, model=model, vocoder=vocoder,
speaker_embedding=speaker_embedding, return_as_byte=return_as_byte, sr=sr,
tts_speed=tts_speed)
if verbose:
print("end _predict_from_text")
else:
if verbose:
print("no audio")
no_audio = get_no_audio(sr=sr, return_as_byte=return_as_byte)
if return_gradio:
import gradio as gr
audio = gr.Audio(value=no_audio, autoplay=False)
else:
audio = no_audio
return audio, sentence, sentence_state
def predict_from_text(text, speaker, tts_speed, processor=None, model=None, vocoder=None, return_as_byte=True, verbose=False):
if speaker == "None":
return
if return_as_byte:
audio0 = prepare_speech(sr=16000)
yield audio0
sentence_state = init_sentence_state()
speaker_embedding = get_speaker_embedding(speaker, model.device)
while True:
sentence, sentence_state, is_done = get_sentence(text, sentence_state=sentence_state, is_final=False,
verbose=verbose)
if sentence is not None:
audio = _predict_from_text(sentence, speaker, processor=processor, model=model, vocoder=vocoder,
speaker_embedding=speaker_embedding,
return_as_byte=return_as_byte,
tts_speed=tts_speed)
yield audio
else:
if is_done:
break
sentence, sentence_state, _ = get_sentence(text, sentence_state=sentence_state, is_final=True, verbose=verbose)
if sentence:
audio = _predict_from_text(sentence, speaker, processor=processor, model=model, vocoder=vocoder,
speaker_embedding=speaker_embedding,
return_as_byte=return_as_byte)
yield audio
def get_speaker_embedding(speaker, device):
if speaker == "Surprise Me!":
# load one of the provided speaker embeddings at random
idx = np.random.randint(len(speaker_embeddings))
key = list(speaker_embeddings.keys())[idx]
speaker_embedding = np.load(speaker_embeddings[key])
# randomly shuffle the elements
np.random.shuffle(speaker_embedding)
# randomly flip half the values
x = (np.random.rand(512) >= 0.5) * 1.0
x[x == 0] = -1.0
speaker_embedding *= x
# speaker_embedding = np.random.rand(512).astype(np.float32) * 0.3 - 0.15
else:
speaker_embedding = np.load(speaker_embeddings[speaker[:3]])
speaker_embedding = torch.tensor(speaker_embedding).unsqueeze(0).to(device)
return speaker_embedding
def _predict_from_text(text, speaker, processor=None, model=None, vocoder=None, speaker_embedding=None,
return_as_byte=True, sr=16000, tts_speed=1.0):
if len(text.strip()) == 0:
return get_no_audio(sr=sr, return_as_byte=return_as_byte)
if speaker_embedding is None:
speaker_embedding = get_speaker_embedding(speaker, model.device)
inputs = processor(text=text, return_tensors="pt")
# limit input length
input_ids = inputs["input_ids"]
input_ids = input_ids[..., :model.config.max_text_positions].to(model.device)
chunk = model.generate_speech(input_ids, speaker_embedding, vocoder=vocoder)
chunk = chunk.detach().cpu().numpy().squeeze()
chunk = (chunk * 32767).astype(np.int16)
chunk = chunk_speed_change(chunk, sr, tts_speed=tts_speed)
if return_as_byte:
return chunk.tobytes()
else:
return sr, chunk
def audio_to_html(audio):
audio_bytes = BytesIO()
wavio.write(audio_bytes, audio[1].astype(np.float32), audio[0], sampwidth=4)
audio_bytes.seek(0)
audio_base64 = base64.b64encode(audio_bytes.read()).decode("utf-8")
audio_player = f'<audio src="data:audio/mpeg;base64,{audio_base64}" controls autoplay></audio>'
return audio_player
def text_to_speech(text, sr=16000):
processor, model, vocoder, speaker_embedding = get_speech_model()
inputs = processor(text=text, return_tensors="pt")
speech = model.generate_speech(inputs["input_ids"], speaker_embedding, vocoder=vocoder)
sf.write("speech.wav", speech.numpy(), samplerate=sr)
def test_bark():
# Too slow, 20s on GPU
from transformers import AutoProcessor, AutoModel
# bark_model = "suno/bark"
bark_model = "suno/bark-small"
# processor = AutoProcessor.from_pretrained("suno/bark-small")
processor = AutoProcessor.from_pretrained(bark_model)
model = AutoModel.from_pretrained(bark_model).to("cuda")
inputs = processor(
text=[
"Hello, my name is Suno. And, uh — and I like pizza. [laughs] But I also have other interests such as playing tic tac toe."],
return_tensors="pt",
)
inputs = inputs.to("cuda")
t0 = time.time()
speech_values = model.generate(**inputs, do_sample=True)
print("Duration: %s" % (time.time() - t0), flush=True)
# sampling_rate = model.config.sample_rate
sampling_rate = 24 * 1024
scipy.io.wavfile.write("bark_out.wav", rate=sampling_rate, data=speech_values.cpu().numpy().squeeze())
|