File size: 23,925 Bytes
b585c7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
"""Wrapper around ChromaDB (version 3) embeddings platform."""
from __future__ import annotations

import logging
import uuid
from typing import (
    TYPE_CHECKING,
    Any,
    Callable,
    Dict,
    Iterable,
    List,
    Optional,
    Tuple,
    Type,
)

import numpy as np

from langchain.docstore.document import Document
from langchain.embeddings.base import Embeddings
from langchain.utils import xor_args
from langchain.vectorstores.base import VectorStore
from langchain.vectorstores.utils import maximal_marginal_relevance

if TYPE_CHECKING:
    import chromamigdb
    import chromamigdb.config
    from chromamigdb.api.types import ID, OneOrMany, Where, WhereDocument

logger = logging.getLogger()
DEFAULT_K = 4  # Number of Documents to return.


def _results_to_docs(results: Any) -> List[Document]:
    return [doc for doc, _ in _results_to_docs_and_scores(results)]


def _results_to_docs_and_scores(results: Any) -> List[Tuple[Document, float]]:
    return [
        # TODO: Chroma can do batch querying,
        # we shouldn't hard code to the 1st result
        (Document(page_content=result[0], metadata=result[1] or {}), result[2])
        for result in zip(
            results["documents"][0],
            results["metadatas"][0],
            results["distances"][0],
        )
    ]


class ChromaMig(VectorStore):
    """Wrapper around ChromaDB embeddings platform.

    To use, you should have the ``chromamigdb`` python package installed.

    Example:
        .. code-block:: python

                from langchain.vectorstores import Chroma
                from langchain.embeddings.openai import OpenAIEmbeddings

                embeddings = OpenAIEmbeddings()
                vectorstore = Chroma("langchain_store", embeddings)
    """

    _LANGCHAIN_DEFAULT_COLLECTION_NAME = "langchain"

    def __init__(
        self,
        collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
        embedding_function: Optional[Embeddings] = None,
        persist_directory: Optional[str] = None,
        client_settings: Optional[chromamigdb.config.Settings] = None,
        collection_metadata: Optional[Dict] = None,
        client: Optional[chromamigdb.Client] = None,
        relevance_score_fn: Optional[Callable[[float], float]] = None,
    ) -> None:
        """Initialize with Chroma client."""
        try:
            import chromamigdb
            import chromamigdb.config
        except ImportError:
            raise ValueError(
                "Could not import chromamigdb python package. "
                "Please install it with `pip install chromamigdb`."
            )

        if client is not None:
            self._client_settings = client_settings
            self._client = client
            self._persist_directory = persist_directory
        else:
            if client_settings:
                # If client_settings is provided with persist_directory specified,
                # then it is "in-memory and persisting to disk" mode.
                client_settings.persist_directory = (
                    persist_directory or client_settings.persist_directory
                )
                if client_settings.persist_directory is not None:
                    # Maintain backwards compatibility with chromamigdb < 0.4.0
                    major, minor, _ = chromamigdb.__version__.split(".")
                    if int(major) == 0 and int(minor) < 4:
                        client_settings.chroma_db_impl = "duckdb+parquet"

                _client_settings = client_settings
            elif persist_directory:
                # Maintain backwards compatibility with chromamigdb < 0.4.0
                major, minor, _ = chromamigdb.__version__.split(".")
                if int(major) == 0 and int(minor) < 4:
                    _client_settings = chromamigdb.config.Settings(
                        chroma_db_impl="duckdb+parquet",
                    )
                else:
                    _client_settings = chromamigdb.config.Settings(is_persistent=True)
                _client_settings.persist_directory = persist_directory
            else:
                _client_settings = chromamigdb.config.Settings()
            self._client_settings = _client_settings
            self._client = chromamigdb.Client(_client_settings)
            self._persist_directory = (
                _client_settings.persist_directory or persist_directory
            )

        self._embedding_function = embedding_function
        self._collection = self._client.get_or_create_collection(
            name=collection_name,
            embedding_function=self._embedding_function.embed_documents
            if self._embedding_function is not None
            else None,
            metadata=collection_metadata,
        )
        self.override_relevance_score_fn = relevance_score_fn

    @property
    def embeddings(self) -> Optional[Embeddings]:
        return self._embedding_function

    @xor_args(("query_texts", "query_embeddings"))
    def __query_collection(
        self,
        query_texts: Optional[List[str]] = None,
        query_embeddings: Optional[List[List[float]]] = None,
        n_results: int = 4,
        where: Optional[Dict[str, str]] = None,
        **kwargs: Any,
    ) -> List[Document]:
        """Query the chroma collection."""
        try:
            import chromamigdb  # noqa: F401
        except ImportError:
            raise ValueError(
                "Could not import chromamigdb python package. "
                "Please install it with `pip install chromamigdb`."
            )
        return self._collection.query(
            query_texts=query_texts,
            query_embeddings=query_embeddings,
            n_results=n_results,
            where=where,
            **kwargs,
        )

    def add_texts(
        self,
        texts: Iterable[str],
        metadatas: Optional[List[dict]] = None,
        ids: Optional[List[str]] = None,
        **kwargs: Any,
    ) -> List[str]:
        """Run more texts through the embeddings and add to the vectorstore.

        Args:
            texts (Iterable[str]): Texts to add to the vectorstore.
            metadatas (Optional[List[dict]], optional): Optional list of metadatas.
            ids (Optional[List[str]], optional): Optional list of IDs.

        Returns:
            List[str]: List of IDs of the added texts.
        """
        # TODO: Handle the case where the user doesn't provide ids on the Collection
        if ids is None:
            ids = [str(uuid.uuid1()) for _ in texts]
        embeddings = None
        texts = list(texts)
        if self._embedding_function is not None:
            embeddings = self._embedding_function.embed_documents(texts)
        if metadatas:
            # fill metadatas with empty dicts if somebody
            # did not specify metadata for all texts
            length_diff = len(texts) - len(metadatas)
            if length_diff:
                metadatas = metadatas + [{}] * length_diff
            empty_ids = []
            non_empty_ids = []
            for idx, m in enumerate(metadatas):
                if m:
                    non_empty_ids.append(idx)
                else:
                    empty_ids.append(idx)
            if non_empty_ids:
                metadatas = [metadatas[idx] for idx in non_empty_ids]
                texts_with_metadatas = [texts[idx] for idx in non_empty_ids]
                embeddings_with_metadatas = (
                    [embeddings[idx] for idx in non_empty_ids] if embeddings else None
                )
                ids_with_metadata = [ids[idx] for idx in non_empty_ids]
                self._collection.upsert(
                    metadatas=metadatas,
                    embeddings=embeddings_with_metadatas,
                    documents=texts_with_metadatas,
                    ids=ids_with_metadata,
                )
            if empty_ids:
                texts_without_metadatas = [texts[j] for j in empty_ids]
                embeddings_without_metadatas = (
                    [embeddings[j] for j in empty_ids] if embeddings else None
                )
                ids_without_metadatas = [ids[j] for j in empty_ids]
                self._collection.upsert(
                    embeddings=embeddings_without_metadatas,
                    documents=texts_without_metadatas,
                    ids=ids_without_metadatas,
                )
        else:
            self._collection.upsert(
                embeddings=embeddings,
                documents=texts,
                ids=ids,
            )
        return ids

    def similarity_search(
        self,
        query: str,
        k: int = DEFAULT_K,
        filter: Optional[Dict[str, str]] = None,
        **kwargs: Any,
    ) -> List[Document]:
        """Run similarity search with Chroma.

        Args:
            query (str): Query text to search for.
            k (int): Number of results to return. Defaults to 4.
            filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.

        Returns:
            List[Document]: List of documents most similar to the query text.
        """
        docs_and_scores = self.similarity_search_with_score(query, k, filter=filter)
        return [doc for doc, _ in docs_and_scores]

    def similarity_search_by_vector(
        self,
        embedding: List[float],
        k: int = DEFAULT_K,
        filter: Optional[Dict[str, str]] = None,
        **kwargs: Any,
    ) -> List[Document]:
        """Return docs most similar to embedding vector.
        Args:
            embedding (List[float]): Embedding to look up documents similar to.
            k (int): Number of Documents to return. Defaults to 4.
            filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
        Returns:
            List of Documents most similar to the query vector.
        """
        results = self.__query_collection(
            query_embeddings=embedding, n_results=k, where=filter
        )
        return _results_to_docs(results)

    def similarity_search_by_vector_with_relevance_scores(
        self,
        embedding: List[float],
        k: int = DEFAULT_K,
        filter: Optional[Dict[str, str]] = None,
        **kwargs: Any,
    ) -> List[Tuple[Document, float]]:
        """
        Return docs most similar to embedding vector and similarity score.

        Args:
            embedding (List[float]): Embedding to look up documents similar to.
            k (int): Number of Documents to return. Defaults to 4.
            filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.

        Returns:
            List[Tuple[Document, float]]: List of documents most similar to
            the query text and cosine distance in float for each.
            Lower score represents more similarity.
        """
        results = self.__query_collection(
            query_embeddings=embedding, n_results=k, where=filter
        )
        return _results_to_docs_and_scores(results)

    def similarity_search_with_score(
        self,
        query: str,
        k: int = DEFAULT_K,
        filter: Optional[Dict[str, str]] = None,
        **kwargs: Any,
    ) -> List[Tuple[Document, float]]:
        """Run similarity search with Chroma with distance.

        Args:
            query (str): Query text to search for.
            k (int): Number of results to return. Defaults to 4.
            filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.

        Returns:
            List[Tuple[Document, float]]: List of documents most similar to
            the query text and cosine distance in float for each.
            Lower score represents more similarity.
        """
        if self._embedding_function is None:
            results = self.__query_collection(
                query_texts=[query], n_results=k, where=filter
            )
        else:
            query_embedding = self._embedding_function.embed_query(query)
            results = self.__query_collection(
                query_embeddings=[query_embedding], n_results=k, where=filter
            )

        return _results_to_docs_and_scores(results)

    def _select_relevance_score_fn(self) -> Callable[[float], float]:
        """
        The 'correct' relevance function
        may differ depending on a few things, including:
        - the distance / similarity metric used by the VectorStore
        - the scale of your embeddings (OpenAI's are unit normed. Many others are not!)
        - embedding dimensionality
        - etc.
        """
        if self.override_relevance_score_fn:
            return self.override_relevance_score_fn

        distance = "l2"
        distance_key = "hnsw:space"
        metadata = self._collection.metadata

        if metadata and distance_key in metadata:
            distance = metadata[distance_key]

        if distance == "cosine":
            return self._cosine_relevance_score_fn
        elif distance == "l2":
            return self._euclidean_relevance_score_fn
        elif distance == "ip":
            return self._max_inner_product_relevance_score_fn
        else:
            raise ValueError(
                "No supported normalization function"
                f" for distance metric of type: {distance}."
                "Consider providing relevance_score_fn to Chroma constructor."
            )

    def max_marginal_relevance_search_by_vector(
        self,
        embedding: List[float],
        k: int = DEFAULT_K,
        fetch_k: int = 20,
        lambda_mult: float = 0.5,
        filter: Optional[Dict[str, str]] = None,
        **kwargs: Any,
    ) -> List[Document]:
        """Return docs selected using the maximal marginal relevance.
        Maximal marginal relevance optimizes for similarity to query AND diversity
        among selected documents.

        Args:
            embedding: Embedding to look up documents similar to.
            k: Number of Documents to return. Defaults to 4.
            fetch_k: Number of Documents to fetch to pass to MMR algorithm.
            lambda_mult: Number between 0 and 1 that determines the degree
                        of diversity among the results with 0 corresponding
                        to maximum diversity and 1 to minimum diversity.
                        Defaults to 0.5.
            filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.

        Returns:
            List of Documents selected by maximal marginal relevance.
        """

        results = self.__query_collection(
            query_embeddings=embedding,
            n_results=fetch_k,
            where=filter,
            include=["metadatas", "documents", "distances", "embeddings"],
        )
        mmr_selected = maximal_marginal_relevance(
            np.array(embedding, dtype=np.float32),
            results["embeddings"][0],
            k=k,
            lambda_mult=lambda_mult,
        )

        candidates = _results_to_docs(results)

        selected_results = [r for i, r in enumerate(candidates) if i in mmr_selected]
        return selected_results

    def max_marginal_relevance_search(
        self,
        query: str,
        k: int = DEFAULT_K,
        fetch_k: int = 20,
        lambda_mult: float = 0.5,
        filter: Optional[Dict[str, str]] = None,
        **kwargs: Any,
    ) -> List[Document]:
        """Return docs selected using the maximal marginal relevance.
        Maximal marginal relevance optimizes for similarity to query AND diversity
        among selected documents.

        Args:
            query: Text to look up documents similar to.
            k: Number of Documents to return. Defaults to 4.
            fetch_k: Number of Documents to fetch to pass to MMR algorithm.
            lambda_mult: Number between 0 and 1 that determines the degree
                        of diversity among the results with 0 corresponding
                        to maximum diversity and 1 to minimum diversity.
                        Defaults to 0.5.
            filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.

        Returns:
            List of Documents selected by maximal marginal relevance.
        """
        if self._embedding_function is None:
            raise ValueError(
                "For MMR search, you must specify an embedding function on" "creation."
            )

        embedding = self._embedding_function.embed_query(query)
        docs = self.max_marginal_relevance_search_by_vector(
            embedding, k, fetch_k, lambda_mult=lambda_mult, filter=filter
        )
        return docs

    def delete_collection(self) -> None:
        """Delete the collection."""
        self._client.delete_collection(self._collection.name)

    def get(
        self,
        ids: Optional[OneOrMany[ID]] = None,
        where: Optional[Where] = None,
        limit: Optional[int] = None,
        offset: Optional[int] = None,
        where_document: Optional[WhereDocument] = None,
        include: Optional[List[str]] = None,
    ) -> Dict[str, Any]:
        """Gets the collection.

        Args:
            ids: The ids of the embeddings to get. Optional.
            where: A Where type dict used to filter results by.
                   E.g. `{"color" : "red", "price": 4.20}`. Optional.
            limit: The number of documents to return. Optional.
            offset: The offset to start returning results from.
                    Useful for paging results with limit. Optional.
            where_document: A WhereDocument type dict used to filter by the documents.
                            E.g. `{$contains: {"text": "hello"}}`. Optional.
            include: A list of what to include in the results.
                     Can contain `"embeddings"`, `"metadatas"`, `"documents"`.
                     Ids are always included.
                     Defaults to `["metadatas", "documents"]`. Optional.
        """
        kwargs = {
            "ids": ids,
            "where": where,
            "limit": limit,
            "offset": offset,
            "where_document": where_document,
        }

        if include is not None:
            kwargs["include"] = include

        return self._collection.get(**kwargs)

    def persist(self) -> None:
        """Persist the collection.

        This can be used to explicitly persist the data to disk.
        It will also be called automatically when the object is destroyed.
        """
        if self._persist_directory is None:
            raise ValueError(
                "You must specify a persist_directory on"
                "creation to persist the collection."
            )
        import chromamigdb

        # Maintain backwards compatibility with chromamigdb < 0.4.0
        major, minor, _ = chromamigdb.__version__.split(".")
        if int(major) == 0 and int(minor) < 4:
            self._client.persist()

    def update_document(self, document_id: str, document: Document) -> None:
        """Update a document in the collection.

        Args:
            document_id (str): ID of the document to update.
            document (Document): Document to update.
        """
        text = document.page_content
        metadata = document.metadata
        if self._embedding_function is None:
            raise ValueError(
                "For update, you must specify an embedding function on creation."
            )
        embeddings = self._embedding_function.embed_documents([text])

        self._collection.update(
            ids=[document_id],
            embeddings=embeddings,
            documents=[text],
            metadatas=[metadata],
        )

    @classmethod
    def from_texts(
        cls: Type[ChromaMig],
        texts: List[str],
        embedding: Optional[Embeddings] = None,
        metadatas: Optional[List[dict]] = None,
        ids: Optional[List[str]] = None,
        collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
        persist_directory: Optional[str] = None,
        client_settings: Optional[chromamigdb.config.Settings] = None,
        client: Optional[chromamigdb.Client] = None,
        collection_metadata: Optional[Dict] = None,
        **kwargs: Any,
    ) -> ChromaMig:
        """Create a Chroma vectorstore from a raw documents.

        If a persist_directory is specified, the collection will be persisted there.
        Otherwise, the data will be ephemeral in-memory.

        Args:
            texts (List[str]): List of texts to add to the collection.
            collection_name (str): Name of the collection to create.
            persist_directory (Optional[str]): Directory to persist the collection.
            embedding (Optional[Embeddings]): Embedding function. Defaults to None.
            metadatas (Optional[List[dict]]): List of metadatas. Defaults to None.
            ids (Optional[List[str]]): List of document IDs. Defaults to None.
            client_settings (Optional[chromamigdb.config.Settings]): Chroma client settings
            collection_metadata (Optional[Dict]): Collection configurations.
                                                  Defaults to None.

        Returns:
            Chroma: Chroma vectorstore.
        """
        chroma_collection = cls(
            collection_name=collection_name,
            embedding_function=embedding,
            persist_directory=persist_directory,
            client_settings=client_settings,
            client=client,
            collection_metadata=collection_metadata,
            **kwargs,
        )
        chroma_collection.add_texts(texts=texts, metadatas=metadatas, ids=ids)
        return chroma_collection

    @classmethod
    def from_documents(
        cls: Type[ChromaMig],
        documents: List[Document],
        embedding: Optional[Embeddings] = None,
        ids: Optional[List[str]] = None,
        collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
        persist_directory: Optional[str] = None,
        client_settings: Optional[chromamigdb.config.Settings] = None,
        client: Optional[chromamigdb.Client] = None,  # Add this line
        collection_metadata: Optional[Dict] = None,
        **kwargs: Any,
    ) -> ChromaMig:
        """Create a Chroma vectorstore from a list of documents.

        If a persist_directory is specified, the collection will be persisted there.
        Otherwise, the data will be ephemeral in-memory.

        Args:
            collection_name (str): Name of the collection to create.
            persist_directory (Optional[str]): Directory to persist the collection.
            ids (Optional[List[str]]): List of document IDs. Defaults to None.
            documents (List[Document]): List of documents to add to the vectorstore.
            embedding (Optional[Embeddings]): Embedding function. Defaults to None.
            client_settings (Optional[chromamigdb.config.Settings]): Chroma client settings
            collection_metadata (Optional[Dict]): Collection configurations.
                                                  Defaults to None.

        Returns:
            Chroma: Chroma vectorstore.
        """
        texts = [doc.page_content for doc in documents]
        metadatas = [doc.metadata for doc in documents]
        return cls.from_texts(
            texts=texts,
            embedding=embedding,
            metadatas=metadatas,
            ids=ids,
            collection_name=collection_name,
            persist_directory=persist_directory,
            client_settings=client_settings,
            client=client,
            collection_metadata=collection_metadata,
            **kwargs,
        )

    def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> None:
        """Delete by vector IDs.

        Args:
            ids: List of ids to delete.
        """
        self._collection.delete(ids=ids)