File size: 21,961 Bytes
b585c7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
import abc
import ast
import collections
from typing import (
    Any,
    AsyncGenerator,
    Dict,
    Generator,
    List,
    Optional,
    OrderedDict,
    Union,
)

from h2ogpt_client._gradio_client import GradioClientWrapper
from h2ogpt_client._h2ogpt_enums import (
    DocumentSubset,
    LangChainAction,
    LangChainMode,
    PromptType,
)
from h2ogpt_client._models import Model

_H2OGPT_PARAMETERS_TO_CLIENT = collections.OrderedDict(
    instruction="instruction",
    iinput="input",
    context="system_pre_context",
    stream_output="stream_output",
    prompt_type="prompt_type",
    prompt_dict="prompt_dict",
    temperature="temperature",
    top_p="top_p",
    top_k="top_k",
    penalty_alpha="penalty_alpha",
    num_beams="beams",
    max_new_tokens="max_output_length",
    min_new_tokens="min_output_length",
    early_stopping="early_stopping",
    max_time="max_time",
    repetition_penalty="repetition_penalty",
    num_return_sequences="number_returns",
    do_sample="enable_sampler",
    chat="chat",
    instruction_nochat="instruction_nochat",
    iinput_nochat="input_context_for_instruction",
    langchain_mode="langchain_mode",
    add_chat_history_to_context="add_chat_history_to_context",
    langchain_action="langchain_action",
    langchain_agents="langchain_agents",
    top_k_docs="langchain_top_k_docs",
    chunk="langchain_enable_chunk",
    chunk_size="langchain_chunk_size",
    document_subset="langchain_document_subset",
    document_choice="langchain_document_choice",
    document_source_substrings="langchain_document_source_substrings",
    document_source_substrings_op="langchain_document_source_substrings_op",
    document_content_substrings="langchain_document_content_substrings",
    document_content_substrings_op="langchain_document_content_substrings_op",
    pre_prompt_query="pre_prompt_query",
    prompt_query="prompt_query",
    pre_prompt_summary="pre_prompt_summary",
    prompt_summary="prompt_summary",
    hyde_llm_prompt="hyde_llm_prompt",
    system_prompt="system_prompt",
    image_audio_loaders="image_audio_loaders",
    pdf_loaders="pdf_loaders",
    url_loaders="url_loaders",
    jq_schema="jq_schema",
    visible_models="model",
    h2ogpt_key="h2ogpt_key",
    add_search_to_context="add_search_to_context",
    chat_conversation="chat_conversation",
    text_context_list="text_context_list",
    docs_ordering_type="docs_ordering_type",
    min_max_new_tokens="min_max_new_tokens",
    max_input_tokens="max_input_tokens",
    max_total_input_tokens="max_total_input_tokens",
    docs_token_handling="docs_token_handling",
    docs_joiner="docs_joiner",
    hyde_level="hyde_level",
    hyde_template="hyde_template",
    hyde_show_only_final="hyde_show_only_final",
    doc_json_mode="doc_json_mode",
    chatbot_role="chatbot_role",
    speaker="speaker",
    tts_language="tts_language",
    tts_speed="tts_speed",
)


def _to_h2ogpt_params(client_params: Dict[str, Any]) -> OrderedDict[str, Any]:
    """Convert given params to the order of params in h2oGPT."""

    h2ogpt_params: OrderedDict[str, Any] = collections.OrderedDict()
    for h2ogpt_param_name, client_param_name in _H2OGPT_PARAMETERS_TO_CLIENT.items():
        if client_param_name in client_params:
            h2ogpt_params[h2ogpt_param_name] = client_params[client_param_name]
    return h2ogpt_params


_DEFAULT_PARAMETERS: Dict[str, Any] = dict(
    instruction="",
    input="",
    system_pre_context="",
    stream_output=False,
    prompt_type=PromptType.plain.value,
    prompt_dict="",  # empty as prompt_type cannot be 'custom'
    temperature=0.1,
    top_p=1.0,
    top_k=40,
    penalty_alpha=0.0,
    beams=1.0,
    max_output_length=1024,
    min_output_length=0,
    early_stopping=False,
    max_time=360,
    repetition_penalty=1.07,
    number_returns=1,
    enable_sampler=False,
    chat=False,
    instruction_nochat="",
    input_context_for_instruction="",
    langchain_mode=LangChainMode.DISABLED.value,
    add_chat_history_to_context=False,  # relevant only for the UI
    langchain_action=LangChainAction.QUERY.value,
    langchain_agents=[],
    langchain_top_k_docs=4,  # langchain: number of document chunks
    langchain_enable_chunk=True,  # langchain: whether to chunk documents
    langchain_chunk_size=512,  # langchain: chunk size for document chunking
    langchain_document_subset=DocumentSubset.Relevant.name,
    langchain_document_choice=[],
    langchain_document_source_substrings=[],
    langchain_document_source_substrings_op='and',
    langchain_document_content_substrings=[],
    langchain_document_content_substrings_op='and',
    pre_prompt_query=[],
    prompt_query="",
    pre_prompt_summary="",
    prompt_summary="",
    hyde_llm_prompt="",
    system_prompt="",
    image_audio_loaders=[],
    pdf_loaders=[],
    url_loaders=[],
    jq_schema=".[]",
    model=None,
    h2ogpt_key=None,
    add_search_to_context=False,
    chat_conversation=None,
    text_context_list=[],
    docs_ordering_type="reverse_ucurve_sort",
    min_max_new_tokens=256,
    max_input_tokens=-1,
    max_total_input_tokens=-1,
    docs_token_handling="split_or_merge",
    docs_joiner="\n\n",
    hyde_level=0,
    hyde_template=None,
    hyde_show_only_final=None,
    doc_json_mode=False,
    chatbot_role="None",
    speaker="None",
    tts_language="autodetect",
    tts_speed=1.0,
)


class _Completion(abc.ABC):
    _API_NAME = "/submit_nochat_api"

    def __init__(self, client: GradioClientWrapper, parameters: OrderedDict[str, Any]):
        self._client = client
        self._parameters = dict(parameters)

    def _get_parameters(self, prompt: str) -> Dict[str, Any]:
        self._parameters["instruction_nochat"] = prompt
        return self._parameters

    @staticmethod
    def _get_reply(response: str) -> str:
        return ast.literal_eval(response)["response"]

    def _predict(self, prompt: str) -> str:
        response = self._client.predict(
            str(self._get_parameters(prompt)), api_name=self._API_NAME
        )
        return self._get_reply(response)

    def _predict_and_stream(self, prompt: str) -> Generator[str, None, None]:
        generator = self._client.predict_and_stream(
            str(self._get_parameters(prompt)), api_name=self._API_NAME
        )
        reply_size_so_far = 0
        for response in generator:
            current_reply = self._get_reply(response)
            new_reply_chunk = current_reply[reply_size_so_far:]
            if not new_reply_chunk:
                continue
            reply_size_so_far += len(new_reply_chunk)
            yield new_reply_chunk

    async def _submit(self, prompt: str) -> str:
        response = await self._client.submit(
            str(self._get_parameters(prompt)), api_name=self._API_NAME
        )
        return self._get_reply(response)

    async def _submit_and_stream(self, prompt: str) -> AsyncGenerator[str, None]:
        generator = self._client.submit_and_stream(
            str(self._get_parameters(prompt)), api_name=self._API_NAME
        )
        reply_size_so_far = 0
        async for response in generator:
            current_reply = self._get_reply(response)
            new_reply_chunk = current_reply[reply_size_so_far:]
            if not new_reply_chunk:
                continue
            reply_size_so_far += len(new_reply_chunk)
            yield new_reply_chunk


class TextCompletionCreator:
    """Builder that can create text completions."""

    def __init__(self, client: GradioClientWrapper):
        self._client = client

    def create(
        self,
        model: Union[None, Model, str] = None,
        prompt_type: PromptType = PromptType.plain,
        input_context_for_instruction: str = "",
        enable_sampler=False,
        temperature: float = 0.1,
        top_p: float = 1.0,
        top_k: int = 40,
        penalty_alpha: float = 0.0,
        beams: float = 1.0,
        early_stopping: bool = False,
        min_output_length: int = 0,
        max_output_length: int = 1024,
        max_time: int = 360,
        repetition_penalty: float = 1.07,
        number_returns: int = 1,
        system_pre_context: str = "",
        langchain_mode: LangChainMode = LangChainMode.DISABLED,
        system_prompt: str = "",
        add_search_to_context: bool = False,
        text_context_list: List[str] = [],
        docs_ordering_type: str = "reverse_ucurve_sort",
        min_max_new_tokens: int = 256,
        max_input_tokens: int = -1,
        max_total_input_tokens: int = -1,
        docs_token_handling: str = "split_or_merge",
        docs_joiner: str = "\n\n",
        hyde_level: int = 0,
        hyde_template: Optional[str] = None,
        hyde_show_only_final: bool = False,
        doc_json_mode: bool = False,
        chatbot_role="None",
        speaker="None",
        tts_language="autodetect",
        tts_speed=1.0,
    ) -> "TextCompletion":
        """
        Creates a new text completion.

        :param model: model to be used, `None` means used the default model.
        :param prompt_type: type of the prompt
        :param input_context_for_instruction: input context for instruction
        :param enable_sampler: enable or disable the sampler, required for use of
                temperature, top_p, top_k
        :param temperature: What sampling temperature to use, between 0 and 3.
                Lower values will make it more focused and deterministic, but may lead
                to repeat. Higher values will make the output more creative, but may
                lead to hallucinations.
        :param top_p: cumulative probability of tokens to sample from
        :param top_k: number of tokens to sample from
        :param penalty_alpha: >0 and top_k>1 enable contrastive search (not all models support)
        :param beams: Number of searches for optimal overall probability.
                Higher values uses more GPU memory and compute.
        :param early_stopping: whether to stop early or not in beam search
        :param min_output_length: minimum output length
        :param max_output_length: maximum output length
        :param max_time: maximum time to search optimal output
        :param repetition_penalty: penalty for repetition
        :param number_returns:
        :param system_pre_context: directly pre-appended without prompt processing
        :param langchain_mode: LangChain mode
        :param system_prompt: Universal system prompt to override prompt_type's system
                              prompt
                              If pass 'None' or 'auto' or None, then automatic per-model value used
        :param add_search_to_context: Whether to add web search of query to context
        :param text_context_list: list of strings to use as context (up to allowed max_seq_len of model)
        :param docs_ordering_type: By default uses 'reverse_ucurve_sort' for optimal retrieval
        :param min_max_new_tokens: minimum value for max_new_tokens when auto-adjusting for content of prompt, docs, etc.
        :param max_input_tokens: Max input tokens to place into model context for each LLM call
                                 -1 means auto, fully fill context for query, and fill by original document chunk for summarization
                                 >=0 means use that to limit context filling to that many tokens
        :param max_total_input_tokens: like max_input_tokens but instead of per LLM call, applies across all LLM calls for single summarization/extraction action
        :param docs_token_handling: 'chunk' means fill context with top_k_docs (limited by max_input_tokens or model_max_len) chunks for query
                                                                         or top_k_docs original document chunks summarization
                                    None or 'split_or_merge' means same as 'chunk' for query, while for summarization merges documents to fill up to max_input_tokens or model_max_len tokens
        :param docs_joiner: string to join lists of text when doing split_or_merge.  None means '\n\n'
        :param hyde_level: HYDE level for HYDE approach (https://arxiv.org/abs/2212.10496)
                     0: No HYDE
                     1: Use non-document-based LLM response and original query for embedding query
                     2: Use document-based LLM response and original query for embedding query
                     3+: Continue iterations of embedding prior answer and getting new response
        :param hyde_template:
                     None, 'None', 'auto' uses internal value and enable
                     '{query}' is minimal template one can pass
        :param hyde_show_only_final: See h2oGPT server docs
        :param doc_json_mode: whether to give JSON to LLM and get JSON response back
        :param chatbot_role: See h2oGPT server docs
        :param speaker: See h2oGPT server docs
        :param tts_language: See h2oGPT server docs
        :param tts_speed: See h2oGPT server docs
        """
        args = locals().copy()
        args["prompt_type"] = prompt_type.value  # convert to serializable type
        args["langchain_mode"] = langchain_mode.value  # convert to serializable type
        params = _to_h2ogpt_params({**_DEFAULT_PARAMETERS, **args})
        params["instruction_nochat"] = None  # future prompt
        params["h2ogpt_key"] = self._client.h2ogpt_key
        return TextCompletion(self._client, params)


class TextCompletion(_Completion):
    """Text completion."""

    async def complete(
        self, prompt: str, enable_streaming: bool = False
    ) -> Union[str, AsyncGenerator[str, None]]:
        """
        Complete this text completion.

        :param prompt: text prompt to generate completion for
        :param enable_streaming: whether to enable or disable streaming the response
        :return: response from the model
        """
        if enable_streaming:
            params = self._get_parameters(prompt)
            params["stream_output"] = True
            return self._submit_and_stream(prompt)
        else:
            return await self._submit(prompt)

    def complete_sync(
        self, prompt: str, enable_streaming: bool = False
    ) -> Union[str, Generator[str, None, None]]:
        """
        Complete this text completion synchronously.

        :param prompt: text prompt to generate completion for
        :param enable_streaming: whether to enable or disable streaming the response
        :return: response from the model
        """
        if enable_streaming:
            params = self._get_parameters(prompt)
            params["stream_output"] = True
            return self._predict_and_stream(prompt)
        else:
            return self._predict(prompt)


class ChatCompletionCreator:
    """Chat completion."""

    def __init__(self, client: GradioClientWrapper):
        self._client = client

    def create(
        self,
        model: Union[None, Model, str] = None,
        prompt_type: PromptType = PromptType.plain,
        input_context_for_instruction: str = "",
        enable_sampler=False,
        temperature: float = 0.1,
        top_p: float = 1.0,
        top_k: int = 40,
        penalty_alpha: float = 0.0,
        beams: float = 1.0,
        early_stopping: bool = False,
        min_output_length: int = 0,
        max_output_length: int = 1024,
        max_time: int = 360,
        repetition_penalty: float = 1.07,
        number_returns: int = 1,
        system_pre_context: str = "",
        langchain_mode: LangChainMode = LangChainMode.DISABLED,
        system_prompt: str = "",
        add_search_to_context: bool = False,
        text_context_list: List[str] = [],
        docs_ordering_type: str = "reverse_ucurve_sort",
        min_max_new_tokens: int = 256,
        max_input_tokens: int = -1,
        max_total_input_tokens: int = -1,
        docs_token_handling: str = "split_or_merge",
        docs_joiner: str = "\n\n",
        hyde_level: int = 0,
        hyde_template: Optional[str] = None,
        hyde_show_only_final: bool = False,
        doc_json_mode: bool = False,
        chatbot_role="None",
        speaker="None",
        tts_language="autodetect",
        tts_speed=1.0,
    ) -> "ChatCompletion":
        """
        Creates a new chat completion.

        :param model: model to be used, `None` means used the default model.
        :param prompt_type: type of the prompt
        :param input_context_for_instruction: input context for instruction
        :param enable_sampler: enable or disable the sampler, required for use of
                temperature, top_p, top_k
        :param temperature: What sampling temperature to use, between 0 and 3.
                Lower values will make it more focused and deterministic, but may lead
                to repeat. Higher values will make the output more creative, but may
                lead to hallucinations.
        :param top_p: cumulative probability of tokens to sample from
        :param top_k: number of tokens to sample from
        :param penalty_alpha: >0 and top_k>1 enable contrastive search (not all models support)
        :param beams: Number of searches for optimal overall probability.
                Higher values uses more GPU memory and compute.
        :param early_stopping: whether to stop early or not in beam search
        :param min_output_length: minimum output length
        :param max_output_length: maximum output length
        :param max_time: maximum time to search optimal output
        :param repetition_penalty: penalty for repetition
        :param number_returns:
        :param system_pre_context: directly pre-appended without prompt processing
        :param langchain_mode: LangChain mode
        :param system_prompt: Universal system prompt to override prompt_type's system
                              prompt
        :param add_search_to_context: Whether to add web search of query to context
        :param text_context_list: list of strings to use as context (up to allowed max_seq_len of model)
        :param docs_ordering_type: By default uses 'reverse_ucurve_sort' for optimal retrieval
        :param min_max_new_tokens: minimum value for max_new_tokens when auto-adjusting for content of prompt, docs, etc.
        :param max_input_tokens: Max input tokens to place into model context for each LLM call
                                 -1 means auto, fully fill context for query, and fill by original document chunk for summarization
                                 >=0 means use that to limit context filling to that many tokens
        :param max_total_input_tokens: like max_input_tokens but instead of per LLM call, applies across all LLM calls for single summarization/extraction action
        :param docs_token_handling: 'chunk' means fill context with top_k_docs (limited by max_input_tokens or model_max_len) chunks for query
                                                                         or top_k_docs original document chunks summarization
                                    None or 'split_or_merge' means same as 'chunk' for query, while for summarization merges documents to fill up to max_input_tokens or model_max_len tokens
        :param docs_joiner: string to join lists of text when doing split_or_merge.  None means '\n\n'
        :param hyde_level: HYDE level for HYDE approach (https://arxiv.org/abs/2212.10496)
                     0: No HYDE
                     1: Use non-document-based LLM response and original query for embedding query
                     2: Use document-based LLM response and original query for embedding query
                     3+: Continue iterations of embedding prior answer and getting new response
        :param hyde_template:
                     None, 'None', 'auto' uses internal value and enable
                     '{query}' is minimal template one can pass
        :param hyde_show_only_final: See h2oGPT server docs
        :param doc_json_mode: whether to give JSON to LLM and get JSON response back
        :param chatbot_role: See h2oGPT server docs
        :param speaker: See h2oGPT server docs
        :param tts_language: See h2oGPT server docs
        :param tts_speed: See h2oGPT server docs
        """
        args = locals().copy()
        args["prompt_type"] = prompt_type.value  # convert to serializable type
        args["langchain_mode"] = langchain_mode.value  # convert to serializable type
        params = _to_h2ogpt_params({**_DEFAULT_PARAMETERS, **args})
        params["instruction_nochat"] = None  # future prompts
        params["add_chat_history_to_context"] = True
        params["h2ogpt_key"] = self._client.h2ogpt_key
        params["chat_conversation"] = []  # chat history (FIXME: Only works if 1 model?)
        return ChatCompletion(self._client, params)


class ChatCompletion(_Completion):
    """Chat completion."""

    def _update_history(self, prompt: str, reply: str) -> None:
        self._parameters["chat_conversation"].append((prompt, reply))

    async def chat(self, prompt: str) -> Dict[str, str]:
        """
        Complete this chat completion.

        :param prompt: text prompt to generate completions for
        :returns chat reply
        """
        reply = await self._submit(prompt)
        self._update_history(prompt, reply)
        return {"user": prompt, "gpt": reply}

    def chat_sync(self, prompt: str) -> Dict[str, str]:
        """
        Complete this chat completion.

        :param prompt: text prompt to generate completions for
        :returns chat reply
        """
        reply = self._predict(prompt)
        self._update_history(prompt, reply)
        return {"user": prompt, "gpt": reply}

    def chat_history(self) -> List[Dict[str, str]]:
        """Returns the full chat history."""
        return [
            {"user": i[0], "gpt": i[1]} for i in self._parameters["chat_conversation"]
        ]