File size: 21,961 Bytes
b585c7f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 |
import abc
import ast
import collections
from typing import (
Any,
AsyncGenerator,
Dict,
Generator,
List,
Optional,
OrderedDict,
Union,
)
from h2ogpt_client._gradio_client import GradioClientWrapper
from h2ogpt_client._h2ogpt_enums import (
DocumentSubset,
LangChainAction,
LangChainMode,
PromptType,
)
from h2ogpt_client._models import Model
_H2OGPT_PARAMETERS_TO_CLIENT = collections.OrderedDict(
instruction="instruction",
iinput="input",
context="system_pre_context",
stream_output="stream_output",
prompt_type="prompt_type",
prompt_dict="prompt_dict",
temperature="temperature",
top_p="top_p",
top_k="top_k",
penalty_alpha="penalty_alpha",
num_beams="beams",
max_new_tokens="max_output_length",
min_new_tokens="min_output_length",
early_stopping="early_stopping",
max_time="max_time",
repetition_penalty="repetition_penalty",
num_return_sequences="number_returns",
do_sample="enable_sampler",
chat="chat",
instruction_nochat="instruction_nochat",
iinput_nochat="input_context_for_instruction",
langchain_mode="langchain_mode",
add_chat_history_to_context="add_chat_history_to_context",
langchain_action="langchain_action",
langchain_agents="langchain_agents",
top_k_docs="langchain_top_k_docs",
chunk="langchain_enable_chunk",
chunk_size="langchain_chunk_size",
document_subset="langchain_document_subset",
document_choice="langchain_document_choice",
document_source_substrings="langchain_document_source_substrings",
document_source_substrings_op="langchain_document_source_substrings_op",
document_content_substrings="langchain_document_content_substrings",
document_content_substrings_op="langchain_document_content_substrings_op",
pre_prompt_query="pre_prompt_query",
prompt_query="prompt_query",
pre_prompt_summary="pre_prompt_summary",
prompt_summary="prompt_summary",
hyde_llm_prompt="hyde_llm_prompt",
system_prompt="system_prompt",
image_audio_loaders="image_audio_loaders",
pdf_loaders="pdf_loaders",
url_loaders="url_loaders",
jq_schema="jq_schema",
visible_models="model",
h2ogpt_key="h2ogpt_key",
add_search_to_context="add_search_to_context",
chat_conversation="chat_conversation",
text_context_list="text_context_list",
docs_ordering_type="docs_ordering_type",
min_max_new_tokens="min_max_new_tokens",
max_input_tokens="max_input_tokens",
max_total_input_tokens="max_total_input_tokens",
docs_token_handling="docs_token_handling",
docs_joiner="docs_joiner",
hyde_level="hyde_level",
hyde_template="hyde_template",
hyde_show_only_final="hyde_show_only_final",
doc_json_mode="doc_json_mode",
chatbot_role="chatbot_role",
speaker="speaker",
tts_language="tts_language",
tts_speed="tts_speed",
)
def _to_h2ogpt_params(client_params: Dict[str, Any]) -> OrderedDict[str, Any]:
"""Convert given params to the order of params in h2oGPT."""
h2ogpt_params: OrderedDict[str, Any] = collections.OrderedDict()
for h2ogpt_param_name, client_param_name in _H2OGPT_PARAMETERS_TO_CLIENT.items():
if client_param_name in client_params:
h2ogpt_params[h2ogpt_param_name] = client_params[client_param_name]
return h2ogpt_params
_DEFAULT_PARAMETERS: Dict[str, Any] = dict(
instruction="",
input="",
system_pre_context="",
stream_output=False,
prompt_type=PromptType.plain.value,
prompt_dict="", # empty as prompt_type cannot be 'custom'
temperature=0.1,
top_p=1.0,
top_k=40,
penalty_alpha=0.0,
beams=1.0,
max_output_length=1024,
min_output_length=0,
early_stopping=False,
max_time=360,
repetition_penalty=1.07,
number_returns=1,
enable_sampler=False,
chat=False,
instruction_nochat="",
input_context_for_instruction="",
langchain_mode=LangChainMode.DISABLED.value,
add_chat_history_to_context=False, # relevant only for the UI
langchain_action=LangChainAction.QUERY.value,
langchain_agents=[],
langchain_top_k_docs=4, # langchain: number of document chunks
langchain_enable_chunk=True, # langchain: whether to chunk documents
langchain_chunk_size=512, # langchain: chunk size for document chunking
langchain_document_subset=DocumentSubset.Relevant.name,
langchain_document_choice=[],
langchain_document_source_substrings=[],
langchain_document_source_substrings_op='and',
langchain_document_content_substrings=[],
langchain_document_content_substrings_op='and',
pre_prompt_query=[],
prompt_query="",
pre_prompt_summary="",
prompt_summary="",
hyde_llm_prompt="",
system_prompt="",
image_audio_loaders=[],
pdf_loaders=[],
url_loaders=[],
jq_schema=".[]",
model=None,
h2ogpt_key=None,
add_search_to_context=False,
chat_conversation=None,
text_context_list=[],
docs_ordering_type="reverse_ucurve_sort",
min_max_new_tokens=256,
max_input_tokens=-1,
max_total_input_tokens=-1,
docs_token_handling="split_or_merge",
docs_joiner="\n\n",
hyde_level=0,
hyde_template=None,
hyde_show_only_final=None,
doc_json_mode=False,
chatbot_role="None",
speaker="None",
tts_language="autodetect",
tts_speed=1.0,
)
class _Completion(abc.ABC):
_API_NAME = "/submit_nochat_api"
def __init__(self, client: GradioClientWrapper, parameters: OrderedDict[str, Any]):
self._client = client
self._parameters = dict(parameters)
def _get_parameters(self, prompt: str) -> Dict[str, Any]:
self._parameters["instruction_nochat"] = prompt
return self._parameters
@staticmethod
def _get_reply(response: str) -> str:
return ast.literal_eval(response)["response"]
def _predict(self, prompt: str) -> str:
response = self._client.predict(
str(self._get_parameters(prompt)), api_name=self._API_NAME
)
return self._get_reply(response)
def _predict_and_stream(self, prompt: str) -> Generator[str, None, None]:
generator = self._client.predict_and_stream(
str(self._get_parameters(prompt)), api_name=self._API_NAME
)
reply_size_so_far = 0
for response in generator:
current_reply = self._get_reply(response)
new_reply_chunk = current_reply[reply_size_so_far:]
if not new_reply_chunk:
continue
reply_size_so_far += len(new_reply_chunk)
yield new_reply_chunk
async def _submit(self, prompt: str) -> str:
response = await self._client.submit(
str(self._get_parameters(prompt)), api_name=self._API_NAME
)
return self._get_reply(response)
async def _submit_and_stream(self, prompt: str) -> AsyncGenerator[str, None]:
generator = self._client.submit_and_stream(
str(self._get_parameters(prompt)), api_name=self._API_NAME
)
reply_size_so_far = 0
async for response in generator:
current_reply = self._get_reply(response)
new_reply_chunk = current_reply[reply_size_so_far:]
if not new_reply_chunk:
continue
reply_size_so_far += len(new_reply_chunk)
yield new_reply_chunk
class TextCompletionCreator:
"""Builder that can create text completions."""
def __init__(self, client: GradioClientWrapper):
self._client = client
def create(
self,
model: Union[None, Model, str] = None,
prompt_type: PromptType = PromptType.plain,
input_context_for_instruction: str = "",
enable_sampler=False,
temperature: float = 0.1,
top_p: float = 1.0,
top_k: int = 40,
penalty_alpha: float = 0.0,
beams: float = 1.0,
early_stopping: bool = False,
min_output_length: int = 0,
max_output_length: int = 1024,
max_time: int = 360,
repetition_penalty: float = 1.07,
number_returns: int = 1,
system_pre_context: str = "",
langchain_mode: LangChainMode = LangChainMode.DISABLED,
system_prompt: str = "",
add_search_to_context: bool = False,
text_context_list: List[str] = [],
docs_ordering_type: str = "reverse_ucurve_sort",
min_max_new_tokens: int = 256,
max_input_tokens: int = -1,
max_total_input_tokens: int = -1,
docs_token_handling: str = "split_or_merge",
docs_joiner: str = "\n\n",
hyde_level: int = 0,
hyde_template: Optional[str] = None,
hyde_show_only_final: bool = False,
doc_json_mode: bool = False,
chatbot_role="None",
speaker="None",
tts_language="autodetect",
tts_speed=1.0,
) -> "TextCompletion":
"""
Creates a new text completion.
:param model: model to be used, `None` means used the default model.
:param prompt_type: type of the prompt
:param input_context_for_instruction: input context for instruction
:param enable_sampler: enable or disable the sampler, required for use of
temperature, top_p, top_k
:param temperature: What sampling temperature to use, between 0 and 3.
Lower values will make it more focused and deterministic, but may lead
to repeat. Higher values will make the output more creative, but may
lead to hallucinations.
:param top_p: cumulative probability of tokens to sample from
:param top_k: number of tokens to sample from
:param penalty_alpha: >0 and top_k>1 enable contrastive search (not all models support)
:param beams: Number of searches for optimal overall probability.
Higher values uses more GPU memory and compute.
:param early_stopping: whether to stop early or not in beam search
:param min_output_length: minimum output length
:param max_output_length: maximum output length
:param max_time: maximum time to search optimal output
:param repetition_penalty: penalty for repetition
:param number_returns:
:param system_pre_context: directly pre-appended without prompt processing
:param langchain_mode: LangChain mode
:param system_prompt: Universal system prompt to override prompt_type's system
prompt
If pass 'None' or 'auto' or None, then automatic per-model value used
:param add_search_to_context: Whether to add web search of query to context
:param text_context_list: list of strings to use as context (up to allowed max_seq_len of model)
:param docs_ordering_type: By default uses 'reverse_ucurve_sort' for optimal retrieval
:param min_max_new_tokens: minimum value for max_new_tokens when auto-adjusting for content of prompt, docs, etc.
:param max_input_tokens: Max input tokens to place into model context for each LLM call
-1 means auto, fully fill context for query, and fill by original document chunk for summarization
>=0 means use that to limit context filling to that many tokens
:param max_total_input_tokens: like max_input_tokens but instead of per LLM call, applies across all LLM calls for single summarization/extraction action
:param docs_token_handling: 'chunk' means fill context with top_k_docs (limited by max_input_tokens or model_max_len) chunks for query
or top_k_docs original document chunks summarization
None or 'split_or_merge' means same as 'chunk' for query, while for summarization merges documents to fill up to max_input_tokens or model_max_len tokens
:param docs_joiner: string to join lists of text when doing split_or_merge. None means '\n\n'
:param hyde_level: HYDE level for HYDE approach (https://arxiv.org/abs/2212.10496)
0: No HYDE
1: Use non-document-based LLM response and original query for embedding query
2: Use document-based LLM response and original query for embedding query
3+: Continue iterations of embedding prior answer and getting new response
:param hyde_template:
None, 'None', 'auto' uses internal value and enable
'{query}' is minimal template one can pass
:param hyde_show_only_final: See h2oGPT server docs
:param doc_json_mode: whether to give JSON to LLM and get JSON response back
:param chatbot_role: See h2oGPT server docs
:param speaker: See h2oGPT server docs
:param tts_language: See h2oGPT server docs
:param tts_speed: See h2oGPT server docs
"""
args = locals().copy()
args["prompt_type"] = prompt_type.value # convert to serializable type
args["langchain_mode"] = langchain_mode.value # convert to serializable type
params = _to_h2ogpt_params({**_DEFAULT_PARAMETERS, **args})
params["instruction_nochat"] = None # future prompt
params["h2ogpt_key"] = self._client.h2ogpt_key
return TextCompletion(self._client, params)
class TextCompletion(_Completion):
"""Text completion."""
async def complete(
self, prompt: str, enable_streaming: bool = False
) -> Union[str, AsyncGenerator[str, None]]:
"""
Complete this text completion.
:param prompt: text prompt to generate completion for
:param enable_streaming: whether to enable or disable streaming the response
:return: response from the model
"""
if enable_streaming:
params = self._get_parameters(prompt)
params["stream_output"] = True
return self._submit_and_stream(prompt)
else:
return await self._submit(prompt)
def complete_sync(
self, prompt: str, enable_streaming: bool = False
) -> Union[str, Generator[str, None, None]]:
"""
Complete this text completion synchronously.
:param prompt: text prompt to generate completion for
:param enable_streaming: whether to enable or disable streaming the response
:return: response from the model
"""
if enable_streaming:
params = self._get_parameters(prompt)
params["stream_output"] = True
return self._predict_and_stream(prompt)
else:
return self._predict(prompt)
class ChatCompletionCreator:
"""Chat completion."""
def __init__(self, client: GradioClientWrapper):
self._client = client
def create(
self,
model: Union[None, Model, str] = None,
prompt_type: PromptType = PromptType.plain,
input_context_for_instruction: str = "",
enable_sampler=False,
temperature: float = 0.1,
top_p: float = 1.0,
top_k: int = 40,
penalty_alpha: float = 0.0,
beams: float = 1.0,
early_stopping: bool = False,
min_output_length: int = 0,
max_output_length: int = 1024,
max_time: int = 360,
repetition_penalty: float = 1.07,
number_returns: int = 1,
system_pre_context: str = "",
langchain_mode: LangChainMode = LangChainMode.DISABLED,
system_prompt: str = "",
add_search_to_context: bool = False,
text_context_list: List[str] = [],
docs_ordering_type: str = "reverse_ucurve_sort",
min_max_new_tokens: int = 256,
max_input_tokens: int = -1,
max_total_input_tokens: int = -1,
docs_token_handling: str = "split_or_merge",
docs_joiner: str = "\n\n",
hyde_level: int = 0,
hyde_template: Optional[str] = None,
hyde_show_only_final: bool = False,
doc_json_mode: bool = False,
chatbot_role="None",
speaker="None",
tts_language="autodetect",
tts_speed=1.0,
) -> "ChatCompletion":
"""
Creates a new chat completion.
:param model: model to be used, `None` means used the default model.
:param prompt_type: type of the prompt
:param input_context_for_instruction: input context for instruction
:param enable_sampler: enable or disable the sampler, required for use of
temperature, top_p, top_k
:param temperature: What sampling temperature to use, between 0 and 3.
Lower values will make it more focused and deterministic, but may lead
to repeat. Higher values will make the output more creative, but may
lead to hallucinations.
:param top_p: cumulative probability of tokens to sample from
:param top_k: number of tokens to sample from
:param penalty_alpha: >0 and top_k>1 enable contrastive search (not all models support)
:param beams: Number of searches for optimal overall probability.
Higher values uses more GPU memory and compute.
:param early_stopping: whether to stop early or not in beam search
:param min_output_length: minimum output length
:param max_output_length: maximum output length
:param max_time: maximum time to search optimal output
:param repetition_penalty: penalty for repetition
:param number_returns:
:param system_pre_context: directly pre-appended without prompt processing
:param langchain_mode: LangChain mode
:param system_prompt: Universal system prompt to override prompt_type's system
prompt
:param add_search_to_context: Whether to add web search of query to context
:param text_context_list: list of strings to use as context (up to allowed max_seq_len of model)
:param docs_ordering_type: By default uses 'reverse_ucurve_sort' for optimal retrieval
:param min_max_new_tokens: minimum value for max_new_tokens when auto-adjusting for content of prompt, docs, etc.
:param max_input_tokens: Max input tokens to place into model context for each LLM call
-1 means auto, fully fill context for query, and fill by original document chunk for summarization
>=0 means use that to limit context filling to that many tokens
:param max_total_input_tokens: like max_input_tokens but instead of per LLM call, applies across all LLM calls for single summarization/extraction action
:param docs_token_handling: 'chunk' means fill context with top_k_docs (limited by max_input_tokens or model_max_len) chunks for query
or top_k_docs original document chunks summarization
None or 'split_or_merge' means same as 'chunk' for query, while for summarization merges documents to fill up to max_input_tokens or model_max_len tokens
:param docs_joiner: string to join lists of text when doing split_or_merge. None means '\n\n'
:param hyde_level: HYDE level for HYDE approach (https://arxiv.org/abs/2212.10496)
0: No HYDE
1: Use non-document-based LLM response and original query for embedding query
2: Use document-based LLM response and original query for embedding query
3+: Continue iterations of embedding prior answer and getting new response
:param hyde_template:
None, 'None', 'auto' uses internal value and enable
'{query}' is minimal template one can pass
:param hyde_show_only_final: See h2oGPT server docs
:param doc_json_mode: whether to give JSON to LLM and get JSON response back
:param chatbot_role: See h2oGPT server docs
:param speaker: See h2oGPT server docs
:param tts_language: See h2oGPT server docs
:param tts_speed: See h2oGPT server docs
"""
args = locals().copy()
args["prompt_type"] = prompt_type.value # convert to serializable type
args["langchain_mode"] = langchain_mode.value # convert to serializable type
params = _to_h2ogpt_params({**_DEFAULT_PARAMETERS, **args})
params["instruction_nochat"] = None # future prompts
params["add_chat_history_to_context"] = True
params["h2ogpt_key"] = self._client.h2ogpt_key
params["chat_conversation"] = [] # chat history (FIXME: Only works if 1 model?)
return ChatCompletion(self._client, params)
class ChatCompletion(_Completion):
"""Chat completion."""
def _update_history(self, prompt: str, reply: str) -> None:
self._parameters["chat_conversation"].append((prompt, reply))
async def chat(self, prompt: str) -> Dict[str, str]:
"""
Complete this chat completion.
:param prompt: text prompt to generate completions for
:returns chat reply
"""
reply = await self._submit(prompt)
self._update_history(prompt, reply)
return {"user": prompt, "gpt": reply}
def chat_sync(self, prompt: str) -> Dict[str, str]:
"""
Complete this chat completion.
:param prompt: text prompt to generate completions for
:returns chat reply
"""
reply = self._predict(prompt)
self._update_history(prompt, reply)
return {"user": prompt, "gpt": reply}
def chat_history(self) -> List[Dict[str, str]]:
"""Returns the full chat history."""
return [
{"user": i[0], "gpt": i[1]} for i in self._parameters["chat_conversation"]
]
|